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Classification

Ensemble Methods 2
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Given: N training samples, p variables.
Algorithm:

1. For b = 1 to B:
a. Draw a bootstrap sample of size N from training data.
b. Grow a random-forest tree Tb on the bootstrapped data, by 

recursively repeating the following steps for each terminal 
node, until the minimum node size nmin is reached.
i. Select m variables at random from the p variables.
ii. Pick the best variable and split-point among the m.
iii. Split the node into two child nodes.

2. Output the ensemble of B trees {Tb}.

Random forests
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Given: N training samples, p variables.
Algorithm:

1. For b = 1 to B:
a. Draw a bootstrap sample of size N from training data.
b. Grow a random-forest tree Tb on the bootstrapped data, by 

recursively repeating the following steps for each terminal 
node, until the minimum node size nmin is reached.
i. Select m variables at random from the p variables.
ii. Pick the best variable and split-point among the m.
iii. Split the node into two child nodes.

2. Output the ensemble of B trees {Tb}.

Only difference from bagging with decision trees.
– m typically ≤ sqrt( p ) (even as low as 1)

Random forests
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Random forests routinely outperform bagged ensembles, 
and are often competitive with boosting.

Random forests
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Random forests provide even more reduction of 
variance than bagged decision trees.
– But still do not impact bias.

Benefit appears to be from de-correlation of 
individual trees.
– Bootstrap samples still have significant correlation.

Simpler to train and tune than boosting 
algorithms.

Random forests
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First implemented in FORTRAN by Leo Breiman and 
Adele Cutler, and the term trademarked by them.
http://stat-www.berkeley.edu/users/breiman/RandomForests/cc_home.htm

Commercial distribution licensed exclusively to Salford
Systems.

Lots of open-source implementations in various 
languages and machine learning packages.

Available in MATLAB as class TreeBagger (Statistics 
Toolbox).

Random forests

http://stat-www.berkeley.edu/users/breiman/RandomForests/cc_home.htm
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For improved prediction accuracy (vs. single 
model) often need 100’s to 1000’s of base 
classifiers in ensemble

BUT …
Committee-type classifier ensembles are readily 
parallelized

Classifier ensembles
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Ensemble Cloud Army
(ECA)

A Platform for Parallel Processing of Machine 
Learning Problems in the Amazon Cloud

J. Jeffry Howbert
Insilicos LLC
May 11, 2011
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Started 2003

– Founders: Erik Nilsson, Brian Pratt, Bryan 
Prazen

8 employees

$4M in grant funding to date (mostly SBIR)

Focus on mass spec proteomics
– Software: analysis tools and pipeline
– Cardiovascular biomarker discovery

Insilicos LLC: background
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Two performance benefits:
Ensemble of models => better prediction 
accuracy than single model (usually)
Ensembles are readily parallelized => faster
computation

NOTE: Work to date all on classifiers, but is being extended 
to regression and clustering.

ECA project: concept

Machine learning ensembles,
trained and used in parallel
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Functional language for statistical computing and 
graphics
de facto standard throughout statistics community
Hundreds of supporting packages
Open source

R programming language



Jeff Howbert    Introduction to Machine Learning       Winter 2014               12

Basic resources

Amazon Web Services (AWS)
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EC2: Elastic Compute Cloud
– Configurable compute nodes
– Virtual machines in a variety of “sizes”
– On-demand, reserved, or spot instances

S3: Simple Storage Service
– Store in named S3 “bucket”
– Holds unlimited number of objects
– Any type of object, 1 B to 5 TB in size
– No file system; put and get using name of 

object

AWS basic resources
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EBS: Elastic Block Store
– Block level storage volumes from 1 GB to 1 TB
– Can be attached to any running EC2 instance
– Persist independently of instances

AMI: Amazon Machine Image
– Pre-configured virtual machine: OS + apps + tools
– Loads onto EC2 node at launch
– Thousands available
– Can customize own AMIs and save for later use

AWS basic resources
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ECA architecture

S3 
bucketmaster node

worker node 1
worker node 2

worker node n

local machine dataconfig files

EBS

scripts,
data

results

AMIs

control
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CLOUD
– EC2 nodes

Mostly “small” size
– 32-bit Intel processor, 1.7 GB RAM, 160 GB hard drive
– $0.085 / hr

Limited use of “large” size (64-bit, faster, more 
memory, etc.)

– S3 buckets for off-node data storage
– EBS volume to store AMIs

LOCAL MACHINE
– Personal computer (Windows)

ECA hardware components
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Used only open source components

CLOUD: Amazon Machine Image
– Ubuntu Linux OS
– MPI (message passing interface) – MPICH2
– Python
– R statistical language
– R package Rmpi

Allows parallel distribution of calculations to a cluster
Communicates via underlying MPI  

LOCAL MACHINE: Python
– boto – Python wrapper for AWS API; allows calls to cloud 

resources
– simplejson – Python parser for JSON-formatted config files

ECA software components
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1) CLOUD: pre-existing resources
– S3 bucket
– AMI stored in EBS

2) LOCAL MACHINE: Python script initiates launch
– Reads config files (JSON format)
– Uploads data and R scripts to S3
– Makes request to AWS for one master node
– Passes control to master node and waits for 

results
…. < job runs autonomously in cloud > ….

ECA system launch (1)
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3) CLOUD: Python and bash scripts
a) Head node:

Requests desired number of worker nodes from AWS
Verifies all worker nodes have booted
Verifies SSH communication with all worker nodes
Boots MPI demon on all nodes, verifies communication 

around MPI ring
Transfers R scripts from S3 bucket to local disk

b) All nodes: transfer data from S3 bucket to local 
disk

c) Head node: passes control to ensemble R script

ECA system launch (2)
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Ensemble program flow (1)

SETUP
One master node
Multiple worker nodes
Master is hub for all
communication

Bidirectional communication via MPI between master and 
each worker
No worker-worker

R script with all commands for training, testing, etc. on master
Full copy of training and test data on each worker
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MAIN CYCLE
1. Master sends command to all

workers to perform these tasks
in parallel:

a. Create unique partition of
training data, using unique
random seed

b. Train a base classifier on partition
c. Generate class predictions for test data, using trained 

classifier
2. Workers automatically return predictions to master
3. Master stores predictions
4. Repeats …

Ensemble program flow (2)
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END PROCESSING
All by master:
1. Aggregates predictions from all workers over all cycles
2. Computes most commonly predicted class for each 

instance in test set, outputs that as ensemble prediction

Ensemble program flow (3)
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Datasets

ECA benchmarks

Name Source Domain Instances Features Feature type(s) Classes

satimage UCI soil types from 
satellite images 

4435 train,  
2000 test 36 numeric (0-255) 6

covertype UCI
forest cover types 
from cartographic 

variables 
581012 54

10 numeric, 
44 binary 

qualitative
7

jones Ref. 3 protein secondary
structure

 209529 train, 
17731 test 315 numeric 3
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For ensembles, training subsets must deliver diversity, 
accuracy, and fast computation.
For large datasets used with ECA, bootstrap samples are 
too large for practical computation.
Instead, much smaller subsets of records are generated 
by random sampling without replacement.  

From Lecture 3:
“The key principle for effective sampling is the following: 

– Using a sample will work almost as well as using the entire data 
set, provided the sample is representative.

– A sample is representative if it has approximately the same 
distribution of properties (of interest) as the original set of data”

ECA benchmarks
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Ensembles have better accuracy than
individual component classifiers

ECA benchmarks
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Accuracy remains high despite large reduction in features

ECA benchmarks
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The potential speedup from parallelization is strictly 
limited by the portion of the computation that cannot 
be parallelized.
Assume proportion P of computation can be 
parallelized, and proportion (1 – P) is necessarily 
sequential.  The speedup from parallelizing on N
processors is:

For example, if P = 0.9, maximum possible speedup 
is 10, no matter how large N is.

Amdahl’s Law

N
PP +− )1(

1
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Computational performance:
ensembles of decision trees

ECA benchmarks
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Computational performance:
ensembles of neural networks

ECA benchmarks
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Large data handling not as critical as expected
– Best ensemble accuracy associated with 

smaller partitions (< 5,000 instances)

Ensembles with small partitions run much faster 
than those with larger partitions

Important lessons (1)
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Ensembles with small partitions run much faster 
than single classifier trained on all of data, and
are more accurate

Important lessons (2)

Number 
of trees

Instances 
per tree

Processing 
mode

Number 
of nodes

Node 
type

Runtime Accuracy, 
%

1 209529 serial 1 64-bit 2:01:34 58.30
100 2500 serial 1 64-bit 29:54 66.30
180 2500 parallel 60 32-bit 5:44 66.66

Jones dataset, ensemble of decision trees
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RMPI version released on SourceForge

ica.sf.net

ECA is open source
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As time went on, AWS’s growing popularity led to 
higher utilization loads, longer latencies for inter-
node communication.
MPI became less and less reliable.  Eventually 
MPI-based clusters on generic EC2 nodes were 
useless.
Solutions:
– Use Hadoop instead of MPI.
– Rent high-end EC2 nodes designed for 

communication-intensive clusters.

Important lessons (3)
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Occam’s Razor

Given two models with similar generalization 
errors, one should prefer the simpler model over 
the more complex model.

For complex models, there is a greater chance it 
was fitted accidentally by errors in data.

Model complexity should therefore be considered 
when evaluating a model.
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Generalization paradox of ensembles

http://www.datamininglab.com/pubs/Paradox_JCGS.pdf

http://www.datamininglab.com/pubs/Paradox_JCGS.pdf
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Three fundamental reasons an ensemble may 
work better than a single classifier

Ensemble methods

statistical representationalcomputational

Tom Dietterich, “Ensemble Methods in Machine Learning” (2000)
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