Classification

Neural Networks 1

1

Neural networks

- Topics
 - Perceptrons
 - structure
 - training
 - expressiveness
 - Multilayer networks
 - possible structures
 - activation functions
 - training with gradient descent and backpropagation
 - expressiveness

Connectionist models

- Consider humans:
 - Neuron switching time ~ 0.001 second
 - Number of neurons ~ 10^{10}
 - Connections per neuron ~ 10^{4-5}
 - Scene recognition time ~ 0.1 second
 - 100 inference steps doesn't seem like enough

\Rightarrow Massively parallel computation

Neural networks

• Properties:

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

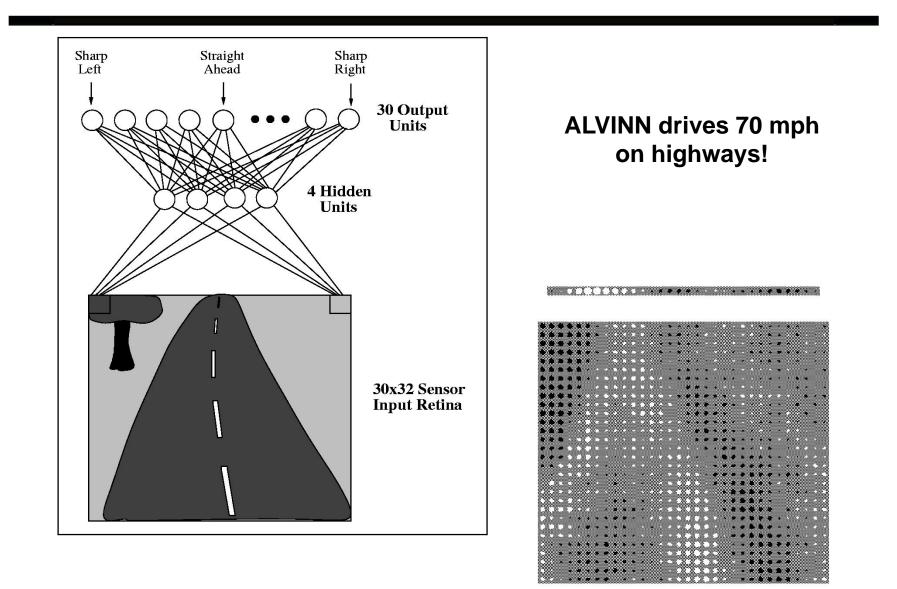
Neural network application

ALVINN: An Autonomous Land Vehicle In a Neural Network

(Carnegie Mellon University Robotics Institute, 1989-1997)

ALVINN is a perception system which learns to control the NAVLAB vehicles by watching a person drive. ALVINN's architecture consists of a single hidden layer back-propagation network. The input layer of the network is a 30x32 unit two dimensional "retina" which receives input from the vehicles video camera. Each input unit is fully connected to a layer of five hidden units which are in turn fully connected to a layer of 30 output units. The output layer is a linear representation of the direction the vehicle should travel in order to keep the vehicle on the road.

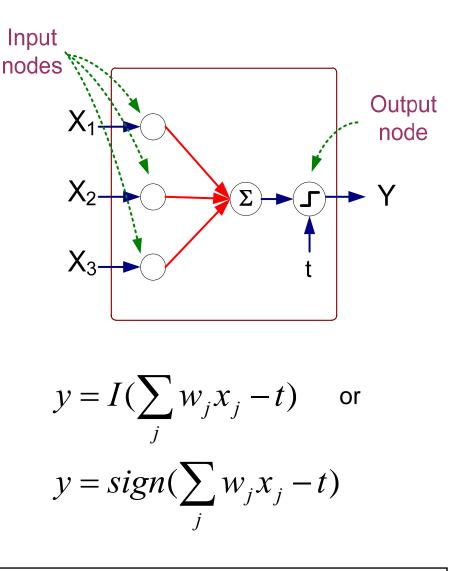
Neural network application



Introduction to Machine Learning

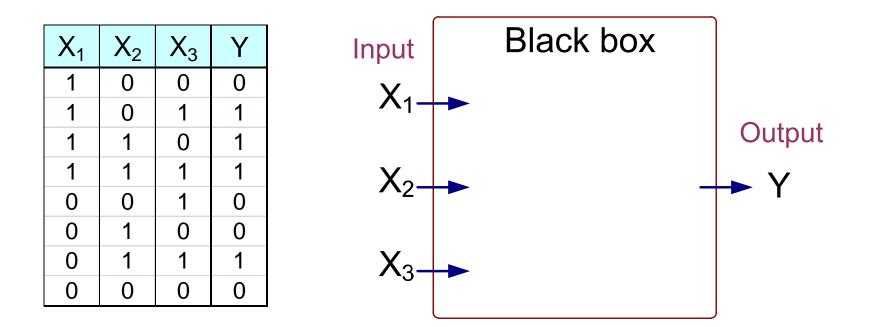
Perceptron structure

- Model is an assembly of nodes connected by weighted links
- Output node sums up its input values according to the weights of their links
- Output node sum then compared against some threshold t



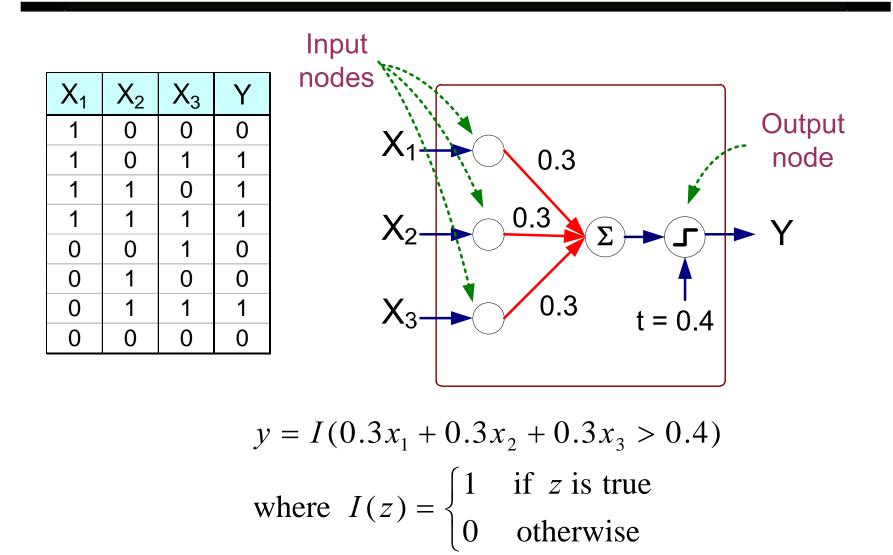
7

Example: modeling a Boolean function



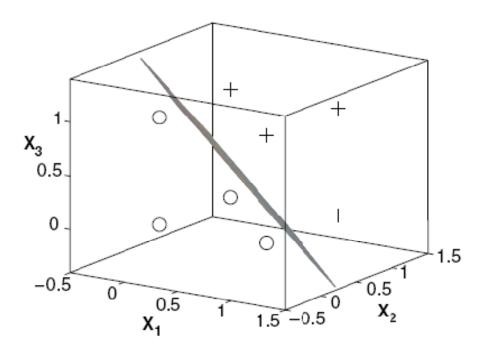
Output Y is 1 if at least two of the three inputs are equal to 1.

Perceptron model



Perceptron decision boundary

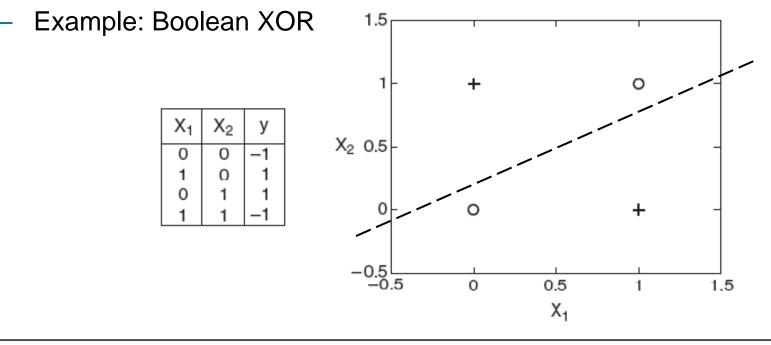
Perceptron decision boundaries are linear (hyperplanes in higher dimensions)



Example: decision surface for Boolean function on preceding slides

Expressiveness of perceptrons

- Can model any function where positive and negative examples are linearly separable
 - Examples: Boolean AND, OR, NAND, NOR
- Cannot (fully) model functions which are not linearly separable.



Perceptron training process

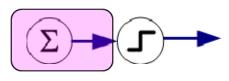
- 1. Initialize weights with random values.
- 2. Do
 - a. Apply perceptron to each training example.b. If example is misclassified, modify weights.
- 3. Until all examples are correctly classified, or process has converged.

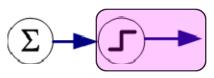
Perceptron training process

- Two rules for modifying weights during training:
 - Perceptron training rule
 - train on thresholded outputs
 - driven by *binary* differences between correct and predicted outputs
 - modify weights with incremental updates
 - Delta rule
 - train on unthresholded outputs

 driven by continuous differences between correct and predicted outputs

modify weights via gradient descent





Perceptron training rule

- 1. Initialize weights with random values.
- 2. Do
 - a. Apply perceptron to each training sample x_i .
 - b. If sample x_i is misclassified, modify all weights w_i .

$$w_j \leftarrow w_j + \eta (y_i - \hat{y}_i) x_{ij}$$
 where
 x_{ij} is input *j* from sample x_i
 y_i is target (correct) output for sample x_i (0 or 1)
 \hat{y}_i is thresholded perceptron output (0 or 1)
 η is learning rate (a small constant)

3. Until all samples are correctly classified.

Perceptron training rule

b. If sample x_i is misclassified, modify all weights w_j . $w_j \leftarrow w_j + \eta (y_i - \hat{y}_i) x_{ij}$ where x_{ij} is input *j* from sample x_i

 y_i is target (correct) output for sample x_i (0 or 1)

 \hat{y}_i is thresholded perceptron output (0 or 1)

 η is learning rate (a small constant)

Examples:

 $y_i = \hat{y}_i$ no update $y_i - \hat{y}_i = 1$; x_{ij} small, positive w_j increased by small amount $y_i - \hat{y}_i = 1$; x_{ij} large, negative w_j decreased by large amount $y_i - \hat{y}_i = -1$; x_{ij} large, negative w_j increased by large amount

Perceptron training rule

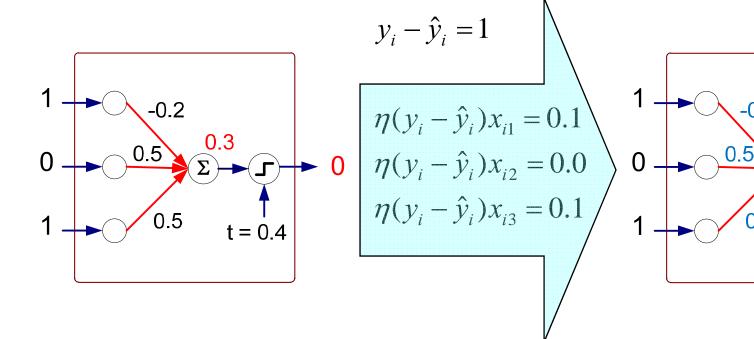
 $\eta = 0.1$

0.5

t = 0.4

-0.1

0.6



Delta training rule

Based on squared error function for weight vector:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i} (y_i - \hat{y}_i)^2 = \frac{1}{2} \sum_{i} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

Note that error is difference between correct output and <u>unthresholded</u> sum of inputs, a continuous quantity (rather than *binary* difference between correct output and thresholded output).

 Weights are modified by descending gradient of error function.

Squared error function for weight vector w

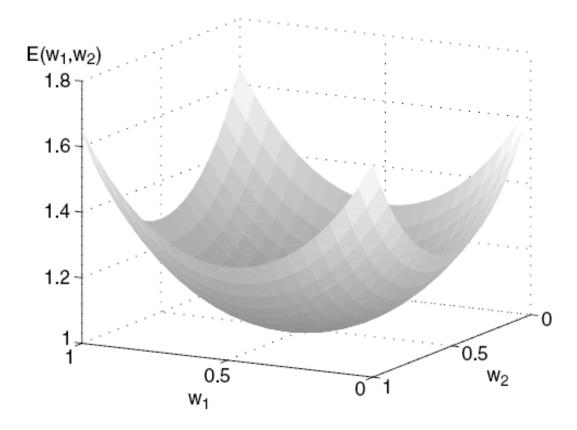


Figure 5.20. Error surface $E(w_1, w_2)$ for a two-parameter model.

Gradient of error function

Gradient:

$$\nabla E(\mathbf{w}) = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_d}\right]$$

Training rule for \mathbf{w} : $\Delta \mathbf{w} = -\eta \nabla E(\mathbf{w})$

Training rule for individual weight :

$$\Delta w_j = -\eta \frac{\partial E}{\partial w_j}$$

Gradient of squared error function

$$\begin{aligned} \frac{\partial E}{\partial w_j} &= \frac{\partial}{\partial w_j} \frac{1}{2} \sum_i (y_i - \hat{y}_i)^2 \\ &= \frac{1}{2} \frac{\partial}{\partial w_j} \sum_i (y_i - \hat{y}_i)^2 \\ &= \frac{1}{2} \sum_i 2(y_i - \hat{y}_i) \frac{\partial}{\partial w_j} (y_i - \hat{y}_i)^2 \\ &= \sum_i (y_i - \hat{y}_i) \frac{\partial}{\partial w_j} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 \\ \frac{\partial E}{\partial w_j} &= \sum_i (y_i - \hat{y}_i) (-x_{ij}) \end{aligned}$$

Delta training rule

- 1. Initialize weights with random values.
- 2. Do
 - a. Apply perceptron to each training sample x_i .
 - b. If sample x_i is misclassified, modify all weights w_i .

$$w_j \leftarrow w_j + \eta (y_i - \hat{y}_i) x_{ij}$$
 where

 x_{ij} is input *j* from sample x_i

- y_i is target (correct) output for sample x_i (0 or 1)
- \hat{y}_i is unthresholded perceptron output (continuous) η is learning rate (a small constant)
- 3. Until all samples are correctly classified, or process converges.

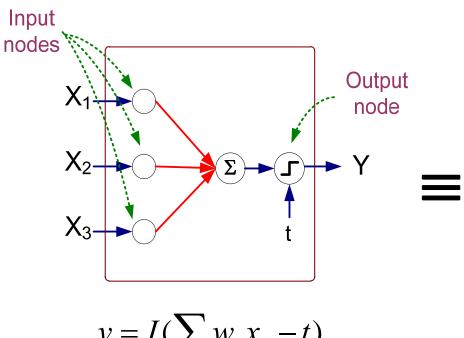
Gradient descent: batch vs. incremental

- Incremental mode (illustrated on preceding slides)
 - Compute error and weight updates for a single sample.
 - Apply updates to weights before processing next sample.
- Batch mode
 - Compute errors and weight updates for a block of samples (maybe all samples).
 - Apply all updates simultaneously to weights.

Perceptron training rule vs. delta rule

- Perceptron training rule guaranteed to correctly classify all training samples if:
 - Samples are linearly separable.
 - Learning rate η is sufficiently small.
- Delta rule uses gradient descent. Guaranteed to converge to hypothesis with minimum squared error if:
 - Learning rate η is sufficiently small.
 - Even when:
 - Training data contains noise.
 - Training data not linearly separable.

Equivalence of perceptron and linear models



$$y = I(\sum_{j} w_{j} x_{j} - t)$$

0 0 ñ 0 0 0 0 0 00 0 0 0 0:0 0 0

FIGURE 2.1. A classification example in two dimensions. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression. The line is the decision boundary defined by $x^T \hat{\beta} = 0.5$. The orange shaded region denotes that part of input space classified as ORANGE, while the blue region is classified as BLUE.

Linear Regression of 0/1 Response

Introduction to Machine Learning