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Classification

Neural Networks 1
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Neural networks

Topics
– Perceptrons

structure
training
expressiveness

– Multilayer networks
possible structures

– activation functions
training with gradient descent and backpropagation
expressiveness
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Connectionist models

Consider humans:
– Neuron switching time ~ 0.001 second
– Number of neurons ~ 1010

– Connections per neuron ~ 104-5

– Scene recognition time ~ 0.1 second
– 100 inference steps doesn’t seem like enough

⇒ Massively parallel computation
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Neural networks

Properties:
– Many neuron-like threshold switching units
– Many weighted interconnections among units
– Highly parallel, distributed process
– Emphasis on tuning weights automatically
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Neural network application

ALVINN: An Autonomous Land Vehicle In a 
Neural Network

(Carnegie Mellon University Robotics Institute, 1989-1997)
ALVINN is a perception system which 
learns to control the NAVLAB vehicles 
by watching a person drive. ALVINN's 
architecture consists of a single hidden 
layer back-propagation network. The 
input layer of the network is a 30x32 
unit two dimensional "retina" which 
receives input from the vehicles video 
camera. Each input unit is fully 
connected to a layer of five hidden 
units which are in turn fully connected 
to a layer of 30 output units. The output 
layer is a linear representation of the 
direction the vehicle should travel in 
order to keep the vehicle on the road.
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Neural network application

ALVINN drives 70 mph 
on highways!
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Perceptron structure

Model is an assembly of 
nodes connected by 
weighted links

Output node sums up its 
input values according to 
the weights of their links

Output node sum then 
compared against some 
threshold t )( txwsigny

j
jj −= ∑

or)( txwIy
j

jj −= ∑



Jeff Howbert    Introduction to Machine Learning       Winter 2014               8

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

Example: modeling a Boolean function

Output Y is 1 if at least two of the three inputs are equal to 1.
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X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

Perceptron model
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Example: decision surface for Boolean function on preceding slides

Perceptron decision boundary

Perceptron decision boundaries are linear
(hyperplanes in higher dimensions)



Jeff Howbert    Introduction to Machine Learning       Winter 2014               11

Can model any function where positive and negative 
examples are linearly separable

– Examples: Boolean AND, OR, NAND, NOR

Cannot (fully) model functions which are not linearly 
separable.

– Example: Boolean XOR

Expressiveness of perceptrons
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1. Initialize weights with random values.
2. Do

a. Apply perceptron to each training example.
b. If example is misclassified, modify weights.

3. Until all examples are correctly classified, or 
process has converged.

Perceptron training process
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Two rules for modifying weights during training:
– Perceptron training rule

train on thresholded outputs
driven by binary differences between correct and 

predicted outputs
modify weights with incremental updates

– Delta rule
train on unthresholded outputs
driven by continuous differences between correct 

and predicted outputs
modify weights via gradient descent

Perceptron training process
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1. Initialize weights with random values.
2. Do

a. Apply perceptron to each training sample xi.
b. If sample xi is misclassified, modify all weights wj.

3. Until all samples are correctly classified.

Perceptron training rule
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b. If sample xi is misclassified, modify all weights wj.

Examples:

Perceptron training rule

amount largeby  increased     negative large, ;1ˆ
amount largeby  decreased     negative large,    ;1ˆ
amount smallby  increased     positive small,    ;1ˆ
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Example of processing one sample

Perceptron training rule
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Based on squared error function for weight 
vector:

Note that error is difference between correct 
output and unthresholded sum of inputs, a 
continuous quantity (rather than binary difference 
between correct output and thresholded output). 

Weights are modified by descending gradient 
of error function. 

Delta training rule
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Squared error function for weight vector w
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Gradient of error function
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1. Initialize weights with random values.
2. Do

a. Apply perceptron to each training sample xi.
b. If sample xi is misclassified, modify all weights wj.

3. Until all samples are correctly classified, or process 
converges.

Delta training rule
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Gradient descent: batch vs. incremental

Incremental mode (illustrated on preceding slides)
– Compute error and weight updates for a single 

sample.
– Apply updates to weights before processing next 

sample.

Batch mode
– Compute errors and weight updates for a block of 

samples (maybe all samples).
– Apply all updates simultaneously to weights.
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Perceptron training rule vs. delta rule

Perceptron training rule guaranteed to correctly classify 
all training samples if:
– Samples are linearly separable.
– Learning rate η is sufficiently small.

Delta rule uses gradient descent.  Guaranteed to 
converge to hypothesis with minimum squared error if:
– Learning rate η is sufficiently small.
Even when:
– Training data contains noise.
– Training data not linearly separable.
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Equivalence of perceptron and linear models
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