
Jeff Howbert Introduction to Machine Learning Winter 2014 1

Classification

Neural Networks 1

Jeff Howbert Introduction to Machine Learning Winter 2014 2

Neural networks

Topics
– Perceptrons

structure
training
expressiveness

– Multilayer networks
possible structures

– activation functions
training with gradient descent and backpropagation
expressiveness

Jeff Howbert Introduction to Machine Learning Winter 2014 3

Connectionist models

Consider humans:
– Neuron switching time ~ 0.001 second
– Number of neurons ~ 1010

– Connections per neuron ~ 104-5

– Scene recognition time ~ 0.1 second
– 100 inference steps doesn’t seem like enough

⇒ Massively parallel computation

Jeff Howbert Introduction to Machine Learning Winter 2014 4

Neural networks

Properties:
– Many neuron-like threshold switching units
– Many weighted interconnections among units
– Highly parallel, distributed process
– Emphasis on tuning weights automatically

Jeff Howbert Introduction to Machine Learning Winter 2014 5

Neural network application

ALVINN: An Autonomous Land Vehicle In a
Neural Network

(Carnegie Mellon University Robotics Institute, 1989-1997)
ALVINN is a perception system which
learns to control the NAVLAB vehicles
by watching a person drive. ALVINN's
architecture consists of a single hidden
layer back-propagation network. The
input layer of the network is a 30x32
unit two dimensional "retina" which
receives input from the vehicles video
camera. Each input unit is fully
connected to a layer of five hidden
units which are in turn fully connected
to a layer of 30 output units. The output
layer is a linear representation of the
direction the vehicle should travel in
order to keep the vehicle on the road.

Jeff Howbert Introduction to Machine Learning Winter 2014 6

Neural network application

ALVINN drives 70 mph
on highways!

Jeff Howbert Introduction to Machine Learning Winter 2014 7

Perceptron structure

Model is an assembly of
nodes connected by
weighted links

Output node sums up its
input values according to
the weights of their links

Output node sum then
compared against some
threshold t)(txwsigny

j
jj −= ∑

or)(txwIy
j

jj −= ∑

Jeff Howbert Introduction to Machine Learning Winter 2014 8

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

Example: modeling a Boolean function

Output Y is 1 if at least two of the three inputs are equal to 1.

Jeff Howbert Introduction to Machine Learning Winter 2014 9

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

Perceptron model

⎩
⎨
⎧

=

>++=

otherwise0
 trueis if1

)(where

)4.03.03.03.0(321

z
zI

xxxIy

Jeff Howbert Introduction to Machine Learning Winter 2014 10

Example: decision surface for Boolean function on preceding slides

Perceptron decision boundary

Perceptron decision boundaries are linear
(hyperplanes in higher dimensions)

Jeff Howbert Introduction to Machine Learning Winter 2014 11

Can model any function where positive and negative
examples are linearly separable

– Examples: Boolean AND, OR, NAND, NOR

Cannot (fully) model functions which are not linearly
separable.

– Example: Boolean XOR

Expressiveness of perceptrons

Jeff Howbert Introduction to Machine Learning Winter 2014 12

1. Initialize weights with random values.
2. Do

a. Apply perceptron to each training example.
b. If example is misclassified, modify weights.

3. Until all examples are correctly classified, or
process has converged.

Perceptron training process

Jeff Howbert Introduction to Machine Learning Winter 2014 13

Two rules for modifying weights during training:
– Perceptron training rule

train on thresholded outputs
driven by binary differences between correct and

predicted outputs
modify weights with incremental updates

– Delta rule
train on unthresholded outputs
driven by continuous differences between correct

and predicted outputs
modify weights via gradient descent

Perceptron training process

Jeff Howbert Introduction to Machine Learning Winter 2014 14

1. Initialize weights with random values.
2. Do

a. Apply perceptron to each training sample xi.
b. If sample xi is misclassified, modify all weights wj.

3. Until all samples are correctly classified.

Perceptron training rule

constant) small (a rate learning is
1)or (0output perceptron ed thresholdis ˆ

1)or (0 samplefor output (correct) target is

 sample from input is

 where)ˆ(

η
y

xy

xjx

xyyww

i

ii

iij

ijiijj −+← η

Jeff Howbert Introduction to Machine Learning Winter 2014 15

b. If sample xi is misclassified, modify all weights wj.

Examples:

Perceptron training rule

amount largeby increased negative large, ;1ˆ
amount largeby decreased negative large, ;1ˆ
amount smallby increased positive small, ;1ˆ

update no ˆ

jijii

jijii

jijii

ii

wxyy

wxyy

wxyy
yy

−=−

=−

=−
=

constant) small (a rate learning is
1)or (0output perceptron ed thresholdis ˆ

1)or (0 samplefor output (correct) target is

 sample from input is

 where)ˆ(

η
y

xy

xjx

xyyww

i

ii

iij

ijiijj −+← η

Jeff Howbert Introduction to Machine Learning Winter 2014 16

Example of processing one sample

Perceptron training rule

1.0)ˆ(
0.0)ˆ(
1.0)ˆ(

1ˆ
1.0

3

2

1

=−
=−
=−

=−
=

iii

iii

iii

ii

xyy
xyy
xyy

yy

η
η
η

η

Jeff Howbert Introduction to Machine Learning Winter 2014 17

Based on squared error function for weight
vector:

Note that error is difference between correct
output and unthresholded sum of inputs, a
continuous quantity (rather than binary difference
between correct output and thresholded output).

Weights are modified by descending gradient
of error function.

Delta training rule

∑∑ ⋅−=−=
i

ii
i

ii yyyE 22)(
2
1)ˆ(

2
1)(xww

Jeff Howbert Introduction to Machine Learning Winter 2014 18

Squared error function for weight vector w

Jeff Howbert Introduction to Machine Learning Winter 2014 19

Gradient of error function

j
j

d

w
Ew

E

w
E

w
E

w
EE

∂
∂

−=Δ

∇−=Δ

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

=∇

η

η

: weightindividualfor rule Training

)(
:for rule Training

,,,)(

:Gradient

10

ww
w

w L

Jeff Howbert Introduction to Machine Learning Winter 2014 20

∑

∑

∑

∑

∑

−−=
∂
∂

⋅−
∂
∂

−=

−
∂
∂

−=

−
∂
∂

=

−
∂
∂

=
∂
∂

i
ijii

j

ii
ji

ii

ii
ji

ii

i
ii

j

i
ii

jj

xyy
w
E

y
w

yy

yy
w

yy

yy
w

yy
ww

E

))(ˆ(

)()ˆ(

)ˆ()ˆ(2
2
1

)ˆ(
2
1

)ˆ(
2
1

2

2

xw

Gradient of squared error function

Jeff Howbert Introduction to Machine Learning Winter 2014 21

constant) small (a rate learning is
s)(continuououtput perceptron dedunthreshol is ˆ

1)or (0 samplefor output (correct) target is

 sample from input is

 where)ˆ(

η
y

xy

xjx

xyyww

i

ii

iij

ijiijj −+← η

1. Initialize weights with random values.
2. Do

a. Apply perceptron to each training sample xi.
b. If sample xi is misclassified, modify all weights wj.

3. Until all samples are correctly classified, or process
converges.

Delta training rule

Jeff Howbert Introduction to Machine Learning Winter 2014 22

Gradient descent: batch vs. incremental

Incremental mode (illustrated on preceding slides)
– Compute error and weight updates for a single

sample.
– Apply updates to weights before processing next

sample.

Batch mode
– Compute errors and weight updates for a block of

samples (maybe all samples).
– Apply all updates simultaneously to weights.

Jeff Howbert Introduction to Machine Learning Winter 2014 23

Perceptron training rule vs. delta rule

Perceptron training rule guaranteed to correctly classify
all training samples if:
– Samples are linearly separable.
– Learning rate η is sufficiently small.

Delta rule uses gradient descent. Guaranteed to
converge to hypothesis with minimum squared error if:
– Learning rate η is sufficiently small.
Even when:
– Training data contains noise.
– Training data not linearly separable.

Jeff Howbert Introduction to Machine Learning Winter 2014 24

Equivalence of perceptron and linear models

)(txwIy
j

jj −= ∑

≡

	Classification��Neural Networks 1
	Neural networks
	Connectionist models
	Neural networks
	Neural network application
	Neural network application
	Perceptron structure
	Example: modeling a Boolean function
	Perceptron model
	Perceptron decision boundary
	Expressiveness of perceptrons
	Perceptron training process
	Perceptron training process
	Perceptron training rule
	Perceptron training rule
	Perceptron training rule
	Delta training rule
	Squared error function for weight vector w
	Gradient of error function
	Gradient of squared error function
	Delta training rule
	Gradient descent: batch vs. incremental
	Perceptron training rule vs. delta rule
	Equivalence of perceptron and linear models

