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Classification / Regression

Neural Networks 2
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Neural networks

Topics
– Perceptrons

structure
training
expressiveness

– Multilayer networks
possible structures

– activation functions
training with gradient descent and backpropagation
expressiveness
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Neural network application

ALVINN: An Autonomous Land Vehicle In a 
Neural Network

(Carnegie Mellon University Robotics Institute, 1989-1997)
ALVINN is a perception system which 
learns to control the NAVLAB vehicles 
by watching a person drive. ALVINN's 
architecture consists of a single hidden 
layer back-propagation network. The 
input layer of the network is a 30x32 
unit two dimensional "retina" which 
receives input from the vehicles video 
camera. Each input unit is fully 
connected to a layer of five hidden 
units which are in turn fully connected 
to a layer of 30 output units. The output 
layer is a linear representation of the 
direction the vehicle should travel in 
order to keep the vehicle on the road.
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Neural network application

ALVINN drives 70 mph 
on highways!
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General structure of multilayer neural network

Activation 
function

g( i )
i Oi

x1

x2

x3

wi1

wi2

wi3
Oi

Neuron iInput Output

threshold, t

Input 
Layer

Hidden 
Layer

Output 
Layer

x1 x2 x3 x4 x5

y

training multilayer neural network 
means learning the weights of 

inter-layer connections

hidden 
unit i



Jeff Howbert    Introduction to Machine Learning       Winter 2014               6

All multilayer neural network architectures have:
– At least one hidden layer
– Feedforward connections from inputs to 

hidden layer(s) to outputs
but more general architectures also allow for:
– Multiple hidden layers
– Recurrent connections

from a node to itself
between nodes in the same layer
between nodes in one layer and nodes in another 

layer above it

Neural network architectures
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Neural network architectures

More than one hidden layer
Recurrent connections
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A node in the input layer:
– distributes value of some component of input vector to the nodes 

in the first hidden layer, without modification

A node in a hidden layer(s):
– forms weighted sum of its inputs
– transforms this sum according to some

activation function (also known as transfer function)
– distributes the transformed sum to the nodes in the next layer

A node in the output layer:
– forms weighted sum of its inputs
– (optionally) transforms this sum according to some activation 

function

Neural networks: roles of nodes
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Neural network activation functions
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The architecture most widely used in practice is 
fairly simple:
– One hidden layer
– No recurrent connections (feedforward only)
– Non-linear activation function in hidden layer (usually 

sigmoid or tanh)
– No activation function in output layer (summation 

only)

This architecture can model any bounded 
continuous function.

Neural network architectures
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Neural network architectures

Regression Classification: two classes
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Neural network architectures

Classification: multiple classes
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When outcomes are one of k possible classes, 
they can be encoded using k dummy variables.
– If an outcome is class j, then j th dummy variable = 1, 

all other dummy variables = 0.

Example with four class labels:

Classification: multiple classes
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Initialize the connection weights w = (w0, w1, …, wm)
– w includes all connections between all layers
– Usually small random values

Adjust weights such that output of neural network is 
consistent with class label / dependent variable of 
training samples
– Typical loss function is squared error:

– Find weights wj that minimize above loss function
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Algorithm for learning neural network
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Sigmoid unit
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Sigmoid unit: training

We can derive gradient descent rules to train:
– A single sigmoid unit
– Multilayer networks of sigmoid units

referred to as backpropagation
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Backpropagation

Example: stochastic gradient descent, feedforward
network with two layers of sigmoid units

Do until convergence
For each training sample i = 〈 xi, yi 〉

Propagate the input forward through the network
Calculate the output oh of every hidden unit
Calculate the output ok of every network output unit

Propagate the errors backward through the network
For each network output unit k, calculate its error term δk

δk = ok( 1 – ok )( yik – ok )
For each hidden unit h, calculate its error term δh

δh = oh( 1 – oh ) ∑k( whkδk )
Update each network weight wba

wba = wba + ηδbzba

where zba is the ath input to unit b
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More on backpropagation
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matlab_demo_15.m

neural network classification of crab gender
200 samples

6 features
2 classes

MATLAB interlude
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Neural networks for data compression

Goal: learn compressed 
representation of data

Number input nodes =
number of output nodes
Number of hidden nodes < 
number of input/output nodes

Train by applying each sample 
as both input and output

Otherwise like standard neural 
network

Learned representation is 
weights of network
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Neural networks for data compression
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Neural networks for data compression
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Once weights are trained:
– Use input > hidden layer weights to encode data
– Store or transmit encoded, compressed form of data
– Use hidden > output layer weights to decode

Neural networks for data compression
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Convergence of backpropagation
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Overfitting in neural networks

Robot perception task (example 1)
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Overfitting in neural networks

Robot perception task (example 2)
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Avoiding overfitting in neural networks
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Expressiveness of multilayer neural networks
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Expressiveness of multilayer neural networks
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Expressiveness of multilayer neural networks

Trained two-layer network with three hidden units (tanh
activation function) and one linear output unit.

– Blue dots: 50 data points from f( x ), where x uniformly sampled 
over range ( -1, 1 ).

– Grey dashed curves: outputs of the three hidden units.
– Red curve: overall network function.

f( x ) = x2 f( x ) = sin( x )
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Trained two-layer network with three hidden units (tanh
activation function) and one linear output unit.

– Blue dots: 50 data points from f( x ), where x uniformly sampled 
over range ( -1, 1 ).

– Grey dashed curves: outputs of the three hidden units.
– Red curve: overall network function.

f( x ) = abs( x ) f( x ) = H( x )
Heaviside step function

Expressiveness of multilayer neural networks
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Two-class classification problem with synthetic data.
Trained two-layer network with two inputs, two hidden 
units (tanh activation function) and one logistic sigmoid 
output unit.

Blue lines:
z = 0.5 contours for hidden
units

Red line:
y = 0.5 decision surface
for overall network

Green line:
optimal decision boundary
computed from distributions
used to generate data

Expressiveness of multilayer neural networks
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Equivalence of neural networks
with other learning algorithms

logistic
transfer 
function

Each hidden unit is a 
logistic regression 
model, whose w
vector is being 
trained while trying 
to match multiple, 
competing outputs.linear

transfer 
function
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Equivalence of neural networks
with other learning algorithms

linear
transfer 
function

linear
transfer 
function

This entire network 
is equivalent to:

Matrix factorization!
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