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Machine Learning

Dimensionality Reduction

Some slides thanks to Xiaoli Fern (CS534, Oregon State Univ., 2011).

Some figures taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 

2013) with permission of the authors, G. James, D. Witten, T. Hastie and R. Tibshirani.
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� Many modern data domains involve huge 
numbers of features / dimensions

– Documents: thousands of words, millions of bigrams

– Images: thousands to millions of pixels

– Genomics: thousands of genes, millions of DNA 

polymorphisms

Dimensionality reduction
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� High dimensionality has many costs

– Redundant and irrelevant features degrade 

performance of some ML algorithms

– Difficulty in interpretation and visualization

– Computation may become infeasible

� what if your algorithm scales as O( n3 )?

– Curse of dimensionality

Why reduce dimensions?
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� Feature selection

– Select subset of existing features (without modification)

– Lecture 5 and Project 1

� Model regularization

– L2 reduces effective dimensionality

– L1 reduces actual dimensionality

� Combine (map) existing features into smaller 
number of new features

– Linear combination (projection)

– Nonlinear combination

Approaches to dimensionality reduction
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� Linearly project n-dimensional data onto a k-
dimensional space

– k < n, often k << n

– Example: project space of 104 words into 3 

dimensions

� There are infinitely many k-dimensional 
subspaces we can project the data onto.

� Which one should we choose?

Linear dimensionality reduction
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� Best k-dimensional subspace for projection 
depends on task

– Classification: maximize separation among classes

� Example: linear discriminant analysis (LDA)

– Regression: maximize correlation between projected 

data and response variable

� Example: partial least squares (PLS)

– Unsupervised: retain as much data variance as 

possible

� Example: principal component  analysis (PCA)

Linear dimensionality reduction
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LDA for two classes
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� Consider data without class labels

� Try to find a more compact representation of the 
data

Unsupervised dimensionality reduction
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� Widely used method for unsupervised, linear 
dimensionality reduction

� GOAL: account for variance of data in as few 
dimensions as possible (using linear projection)

Principal component analysis (PCA)
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� First PC is the projection direction that maximizes the 

variance of the projected data

� Second PC is the projection direction that is orthogonal to 

the first PC and maximizes variance of the projected data

Geometric picture of principal components (PCs)
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� Find a line, such that when the data is projected 
onto that line, it has the maximum variance.

PCA: conceptual algorithm
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� Find a second line, orthogonal to the first, that 
has maximum projected variance.

PCA: conceptual algorithm
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� Repeat until have k orthogonal lines

� The projected position of a point on these lines 
gives the coordinates in the k-dimensional 
reduced space.

PCA: conceptual algorithm
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� Mean center the data

� Compute covariance matrix ΣΣΣΣ

� Calculate eigenvalues and eigenvectors of ΣΣΣΣ

– Eigenvector with largest eigenvalue λ1 is 1st principal 

component (PC)

– Eigenvector with kth largest eigenvalue λk is kth PC

– λk / Σi λi = proportion of variance captured by kth PC

Steps in principal component analysis
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� Full set of PCs comprise a new orthogonal basis for 

feature space, whose axes are aligned with the maximum 

variances of original data.

� Projection of original data onto first k PCs gives a reduced 

dimensionality representation of the data.

� Transforming reduced dimensionality projection back into 

original space gives a reduced dimensionality 

reconstruction of the original data.

� Reconstruction will have some error, but it can be small 

and often is acceptable given the other benefits of 

dimensionality reduction. 

Applying a principal component analysis
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PCA example (1)

original data mean centered data with

PCs overlayed
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PCA example (1)

original data projected

Into full PC space

original data reconstructed using

only a single PC
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PCA example (2)
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PCA: choosing the dimension k
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PCA: choosing the dimension k
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� A typical image of size 256 x 128 pixels is 
described by 256 x 128 = 32768 dimensions.

� Each face image lies somewhere in this high-
dimensional space.

� Images of faces are generally similar in overall 
configuration, thus

– They cannot be randomly distributed in this space.

– We should be able to describe them in a much lower-

dimensional space.

PCA example: face recognition
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PCA for face images: eigenfaces
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(Turk and Pentland 1991)

Face recognition in eigenface space
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Face image retrieval
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� Helps reduce computational complexity.

� Can help supervised learning.

– Reduced dimension ⇒ simpler hypothesis space.

– Smaller VC dimension ⇒ less risk of overfitting.

� PCA can also be seen as noise reduction.

� Caveats:

– Fails when data consists of multiple separate clusters.

– Directions of greatest variance may not be most 

informative (i.e. greatest classification power).

PCA: a useful preprocessing step
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� Practical issue: covariance matrix is n x n.

– E.g. for image data ΣΣΣΣ = 32768 x 32768.

– Finding eigenvectors of such a matrix is slow.

� Singular value decomposition (SVD) to the rescue!

– Can be used to compute principal components.

– Efficient implementations available, e.g. MATLAB svd.

Scaling up PCA
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X = U⋅⋅⋅⋅S⋅⋅⋅⋅VT

Singular value decomposition (SVD)
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X = U⋅⋅⋅⋅S⋅⋅⋅⋅VT

Singular value decomposition (SVD)



Jeff Howbert    Introduction to Machine Learning       Winter 2014               29

� Create mean-centered data matrix X.

� Solve SVD: X = U⋅⋅⋅⋅S⋅⋅⋅⋅VT.

� Columns of V are the eigenvectors of ΣΣΣΣ sorted 
from largest to smallest eigenvalues.

� Select the first k columns as our k principal 
components.

SVD for PCA
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� Supervised alternative to PCA.

� Attempts to find set of orthogonal directions that 
explain both response and predictors.

Partial least squares (PLS)
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� First direction:

– Calculate simple linear regression between each 

predictor and response.

– Use coefficients from these regressions to define first 

direction, giving greatest weight to predictors which 

are highly correlated with response (large 

coefficients).

� Subsequent directions:

– Repeat regression calculations on residuals of 

predictors from preceding direction. 

PLS algorithm
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PLS vs. PCA

solid line – first PLS direction

dotted line – first PCA direction
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� Popular in chemometrics.

– Large number of variables from digitized spectrometry 

signals.

� In regression tasks, PLS doesn’t necessarily 
perform better than ridge regression or pre-
processing with PCA.

– Less bias, but may increase variance.

Partial least squares
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� High-dimensional data is projected onto low-
dimensional subspace using a random matrix 
whose columns have unit length.

� No attempt to optimize a criterion, e.g. variance.

� Preserves structure (e.g. distances) of data with 
minimal distortion.

� Computationally cheaper than PCA.

Random subspace projection
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� Shown to be competitive with PCA for 
dimensionality reduction in several tasks

– Face recognition

– Document retrieval

� Also useful for producing perturbed datasets as 
inputs for ensembles.

Random subspace projection
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� Data often lies on or near a nonlinear low-
dimensional surface

� Such low-dimensional surfaces are called 
manifolds.

Nonlinear dimensionality reduction
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ISOMAP example (1)
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ISOMAP example (2)
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� Visualizes high-dimensional data in a 2- or 3-
dimensional map.

� Better than existing techniques at creating a 
single map that reveals structure at many 
different scales.

� Particularly good for high-dimensional data that 
lie on several different, but related, low-
dimensional manifolds.

– Example: images of objects from multiple classes 

seen from multiple viewpoints.

t-Stochastic neighbor embedding (t-SNE)



Jeff Howbert    Introduction to Machine Learning       Winter 2014               45

Visualization of classes in MNIST data

t-SNE ISOMAP
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“Dimensionality reduction: a comparative review”

(mostly nonlinear methods)

MATLAB toolbox for dimensionality reduction

Dimensionality reduction resources


