Phix the Bookfinder

Architects United

Dan Becker & Dave Langer



Building on previous work

Bookfinder problem space and solution concept was initially
explored by Yulana Shestak, Ren Wu and Dan Becker in
David Socha’s Winter 2012 CSS572 class Evidence Based Design

User
Experience

User
Research

Prototyping Value

No recycling—CSS590 gets 100% fresh code & written material ©

CSS572 course page: https://uw.instructure.com/courses/201073/assignments/syllabus



Description: Who Phix is for, what it
isn’t, and what it is

Readers don’t want to buy a book, or borrow a book — they do
these things because they want to read books.

Phix is not a library lending app, or a book buying app.
It’s not social networking, recommendations, or ratings.
Phix helps readers find the books they want to read.

Search once with Phix to find a book in multiple online stores
and libraries near you



Rationale: Why Phix is needed

* There are lots of ways to get
books, but searching them all
one after another is a hassle!

* Not searching libraries is like
“buying the cow when you
can get the milk for free”

* Other book search options
exist, but not good enough:

— Too much complexity

— Treat buying vs. borrowing as
two separate searches

Search for
book...

A4

oto search Look &t
9 —> Amazon
Amazon... Amazon
results
rd
oto search Look at
: — SPL
SPL... SPL
results
¥
oto search Look at
9 m— uw
UW... uw
results
¥
decide go back Search
which —> to that for book
you want site again

A4

Get book




Rationale: Why desirable?
Phix addresses bookfinding pain points

* Reduce Complexity
— Focus on user path through core use case

Touch the
Search Look at
one you Get book
for book results
want

* Increase Coherence
— Combine libraries and bookstores
— one search: one set of results
— better information: better decisions
— Phix gets you from searching to getting fast
— Send user to source to complete transaction




Rationale: Why Mobile

e Often out of the house when you find out about a
book you want to read

— Out with friend, at work, shopping

* Use location to make the app smarter and easier
— automatically finds the nearby libraries

e Future version could use camera for barcode
scanning or cover search

— Improves ease of use in some use cases — but not all
— Those features are too big to add to project scope



Schedule & Feasibility

RUP Phase Status/Schedule Milestones

Inception Complete Core use case defined
Key benefits identified

Elaboration Complete APIs and libraries selected; proof of concept built
Solution architecture and data model determined
User flows and use cases outlined, prioritized
User Experience design defined

Construction Week 5 ViewModel (VM): Google Books search
View (V): design views for search, results, detail, map
Week 6 VM: Google Books book details
V: implement search and results
Week 7 VM: Worldcat search

V: implement detail

Week 8 V:implement map
V/VM: refine UX/UI from early user feedback

Transition Week 9 Release for class testing

Week 10 Refine based on class feedback

Week 11 Final release, Demo video




Technical Approach

Google Books Book search
00gle books
API ‘I’G 3 Author, Title, ISBN

Book cover thumbnails
Ratings
Description

WorldCat APl (=, WorldCat Online Computer Library Center (OCLC) book
~ number

WP7 Location

. D Windows Phone U5¢" location
Services

Bing Maps API blﬂ Convert user location to ZIP code
gmaps Provide maps to local sources

WorldCat HTML ("-\WorldCat Identify nearby libraries that have a book based on
servlet ~% ZIP code

The solution is highly constrained by restrictive terms of service on APIs and
platforms. Many features which are technically feasible and highly desirable to
users are simply not allowed — for example, Amazon’s API restrictions block Phix.



Phix by Architects United: Summary

Desirable: Phix gets readers the books they want -
fast, easy, and free

Mobile: uses location information to automatically
search nearby libraries —and map them

Feasible: several well-documented APIs provide
most data; remainder can be scraped

Realistic schedule: proof of concept code already
written; modular architecture allows sequential
delivery of features; deliverables arranged into
logical and achievable sequence



