1. General equation

$$F_{\text{in}} - F_{\text{out}} + \text{Generation} = \text{accumulation}$$

$$Generation = (-r_A) \Delta V (1-\varepsilon)$$

$$F_{A, V} - F_{A, V+\Delta V} - r_A \Delta V (1-\varepsilon) = 0$$

$$= > \frac{dF_A}{dV} = -r_A (1-\varepsilon)$$

$$F_i - F_{out} + G = \frac{dN_A}{dt}$$

$$G_j = 2.5 \times 10^{-7} \text{ mole/m}^2 \text{ s}$$
 $C_{0, \text{ stink}} = 5 \times 10^{-3} \text{ mole/m}^3$

$$v_0 = 0.1 \text{ m}^3/\text{s}$$

$$F_{out} = v_0 C_{s, out}$$

$$V = 5 \times 8 \times 2.5 = 100 \text{ m}^3$$

$$A = 5 \times 8 \text{ m}^2$$

(a) steady-state

$$F_{i} - F_{out} + G = \frac{dN_{A}}{dt}$$

$$-v_{0} C_{s, out} + G_{j} A = 0$$

$$-0.1 \times C_{s, out} + 2.5 \times 10^{-7} \times 40 = 0$$

$$C_{s, out} = 10^{-4} \text{ mole/m}^{3}$$

(b) not steady state

$$F_{i}^{-} - F_{out} + G = \frac{dN_{A}}{dt}$$

$$-F_{out} + G = \frac{dC_{S}V}{dt}$$

$$\frac{-V_{0}C_{S} + G_{j}A}{V} = \frac{dC_{S}}{dt}$$

$$-\frac{V_{0}}{V}dt = \frac{dC_{S}}{(C_{S} - \frac{G_{j}A}{V_{0}})}$$

$$\int_{0}^{3600} (-10^{-4})dt = \int_{C_{S,0}}^{C_{S}} \frac{dC_{S}}{(C_{S} - 10^{-7})}$$

$$C_S = 2.34 \times 10^{-4} \text{ mole/m}^3$$

$$X = 0.99$$

$$F_{A0} = 5 \text{ mol / h}$$

$$\nu_0 = 10 \text{ dm}^3 / \text{ h}$$

$$C_{A0} = 0.5 \text{ mole } / \text{ dm}^3$$

For CSTR
$$V = \frac{F_{A0}X}{-r_A}$$

For PFR
$$\frac{dF_A}{dV} = r_A$$

$$F_A = F_{A0}(1-X) \implies dF_A = -F_{A0}dX$$

$$F_{A0} \frac{dX}{dV} = -r_A$$

(a)
$$-r_A = k$$
 $k = 0.05$

O

For CSTR
$$V = \frac{5 \times 0.99}{0.05} = \boxed{99 dm^3}$$

For PFR
$$5\int_0^{0.99} \frac{dX}{0.05} = \int dV$$

 $V = 99 \text{ dm}^3$

(b)
$$-r_A = kC_A$$
 $k = 0.0001s^{-1}$

For CSTR
$$V = \frac{F_{A0}X}{-r_A} = \frac{F_{A0}X}{kC_A} = \frac{v_0C_{A0}X}{kC_{A0}(1-X)} = \frac{v_0X}{k(1-X)} = \boxed{2750dm^3}$$

$$\frac{dF_A}{dV} = -F_{A0}\frac{dX}{dV} = r_A = -kC_A$$

For PFR
$$v_0 C_{A0} \frac{dX}{dV} = kC_{A0} (1 - X)$$

 $\frac{v_0}{k} \int_0^{0.99} \frac{dX}{(1 - X)} = \int dV$
 $V = 127.92 dm^3$

(c)
$$-r_A = kC_A^2$$
 k= 3 dm³/mol h

For CSTR
$$V = \frac{F_{A0}X}{-r_A} = \frac{v_0 C_{A0}X}{k C_{A0}^2 (1-X)^2} = \frac{v_0 X}{k C_{A0} (1-X)^2} = \boxed{66000 dm^3}$$

For PFR
$$\frac{dF_A}{dV} = -F_{A0} \frac{dX}{dV} = r_A = -kC_A^2 = -kC_{A0}^2 (1 - X)^2$$

$$\frac{v_0}{kC_{A0}} \frac{dX}{(1 - X)^2} = dV$$

$$\boxed{V = 660 \, dm^3}$$

4. (for 3rd edition)

X	0	0.2	0.4	0.6	0.8	0.9
r_A	10	16.67	50	50	12.5	90.9
1/r _A	0.1	0.06	0.02	0.02	0.8	0.11

(a)

$$V_{CSTR} = \frac{F_{A0}X}{-r_A} = \frac{300 \times 0.4}{50} = \boxed{2.4 \text{ dm}^3}$$

$$V_{PFR} = F_{A0} \int_{0}^{X} \frac{dX}{-r_A} = 300 \times \frac{(0.1 + 0.02)}{2} \times 0.4 = \boxed{7.2 \text{ dm}^3}$$

(b) Between $0.4 \sim 0.6$, because the rate is constant over this conversion range.

(c)
$$V_{CSTR} = 10.5 \text{ dm}^3$$

= $\frac{F_{A0}X}{-r_A} = 300 \times \frac{X}{-r_A}$

$$=> \frac{X}{-r_{A}} = 0.035$$

You can trial and error until $\frac{X}{-r_A}$ =0.035, or just calculate area from the plot.

From X=0.4 V_1 = 2.4 X=0.6 V_2 =3.6

10.5 = 300 X (0.3X-0.16)

Maximum conversion X = 0.7

(d)

From part (a) we know $X_1 = 0.4$

$$V_{CSTR} = 2.4 = 300(X_2 - 0.4)(0.3X_2 - 0.16)$$

$$X = 0.64$$

(e)

From part (a) we know $X_1 = 0.4$

$$V_{PFR} = 7.2 = F_{A0} \int_{0}^{X} \frac{dX}{-r_A} = 300 \int_{0.4}^{X2} \frac{dX}{-r_A} = 1.2 + 300 \int_{0.6}^{X2} (0.3X - 0.16) dX$$

 $X_2 = 0.905$

(f)

4. for 4th edition

X	0	0.2	0.4	0.6	0.8	0.9
r_A	1	1.67	5.0	5.0	1.25	0.91
$1/r_{A}$	1	0.6	0.2	0.2	0.8	1.1

(a)
$$V_{CSTR} = \frac{F_{A0}X}{-r_A} = \frac{300 \times 0.4}{5} = 24 \text{ dm}^3$$

$$V_{PFR} = F_{A0} \int_{0}^{X} \frac{dX}{-r_A} = 300 \times \frac{(1+0.2)}{2} \times 0.4 = \boxed{72 \text{ dm}^3}$$

(b) Between $0.4 \sim 0.6$, because the rate is constant over this conversion range.

(c)
$$V_{CSTR} = 10.5 \text{ dm}^3$$

$$= \frac{F_{A0} X}{-r_A} = 300 \times \frac{X}{-r_A}$$

$$=> \frac{X}{-r_A} = 0.035$$

You can trial and error until $\frac{X}{-r_A}$ =0.035, or just calculate area from the plot.

From
$$X=0.4$$
 $V_1=24$

$$10.5 = 300 \text{ X } (-2X+1)$$

Maximum conversion X = 0.0378

(d)

From part (a) we know $X_1 = 0.4$

$$V_{CSTR} = 24 = 300(X_2 - 0.4)(3X_2 - 1.6)$$

$$X = 0.64$$

(e)

From part (a) we know $X_1 = 0.4$

$$V_{PFR} = 72 = F_{A0} \int_{0}^{X} \frac{dX}{-r_A} = 300 \int_{0.4}^{X2} \frac{dX}{-r_A} = 12 + 300 \int_{0.6}^{X2} (3X - 1.6) dX$$

$$X_2 = 0.905$$

- (a) CSTR is used before PFR.
- (b) One can calculate the amount of catalyst needed to carry out the same reaction to 80 % conversion using a single CSTR by determining the area of the rectangle.

approximately 22.4 kg catalyst.

(c) for 40 % conversion

→ 8 kg catalyst

(d)

Calculate the area under the curve between 0 and 0.8. Approximately 30 kg

(e)

Calculate the area under the curve between 0 and 0.4 Approximately 15 kg

(g) For different (-r_A) vs. (X) curves, reactors should be arranged so that the smallest amount of catalyst is needed to give the maximum conversion. This can be done by minimizing the area that is occupied be a given reactor. One useful heuristic is that for curves with a negative slope, it is generally better to use a CSTR. Similarly, when the curve has a positive slope, it is generally better to use a PFR.