Problem 1

(a)

7 point
$r_{1}=k_{1} C_{t o}{ }^{2} F_{t}{ }^{-2} F_{A} F_{H}\left(\frac{P}{P_{o}}\right)^{2}\left(\frac{T_{0}}{T}\right)^{2}$
$r_{2}=k_{1} C_{t o}{ }^{2} F_{t}{ }^{-2} F_{A} F_{H}\left(\frac{P}{P_{o}}\right)^{2}\left(\frac{T_{0}}{T}\right)^{2}$
$r_{3}=k_{3} C_{t o}{ }^{2} F_{t}{ }^{-2} F_{C} F_{M}\left(\frac{P}{P_{o}}\right)^{2}\left(\frac{T_{0}}{T}\right)^{2}$
$r_{4}=k_{4} C_{t o} F_{t}^{-1} F_{C}\left(\frac{P}{P_{o}}\right)\left(\frac{T_{0}}{T}\right)$

1 point
$F_{t}=F_{A}+F_{B}+F_{C}+F_{D}+F_{H}+F_{M}$

7 point
$\frac{d F_{A}}{d V}=-r_{1}-r_{2}+r_{3}$
$\frac{d F_{B}}{d V}=3 r_{1}$
$\frac{d F_{C}}{d V}=r_{2}-r_{3}-r_{4}$
$\frac{d F_{D}}{d V}=2 r_{4}$
$\frac{d F_{M}}{d V}=r_{2}-r_{3}$
$\frac{d F_{H}}{d V}=-r_{1}-r_{2}+r_{3}$
(b)

5 point
$\frac{d P}{d V}=-\alpha\left(\frac{P_{0}}{P}\right)\left(\frac{F_{t}}{F_{t 0}}\right)\left(\frac{T}{T_{0}}\right)$
(c)

5 point
$\frac{d T}{d V}=\frac{U a\left(T_{a}-T\right)-r_{1} \Delta H_{1}-r_{2} \Delta H_{2}-r_{3} \Delta H_{3}-r_{4} \Delta H_{4}}{F_{A} C p_{A}+F_{B} C p_{B}+F_{C} C p_{C}+F_{D} C p_{D}+F_{H} C p_{H}+F_{M} C p_{M}}$
(d)

5 global $\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3} \mathrm{k}_{4} \mathrm{P}_{0} \mathrm{~T}_{\mathrm{o}} \mathrm{T}_{\mathrm{a}}$ Ua $\mathrm{C}_{\text {to }}$

5
$F_{t}=F(1)+F(2)+F(3)+F(4)+F(5)+F(6)$
$r_{1}=k_{1} * C_{t 0}{ }^{2} * F_{t}^{-2} * F(1) * F(5) *\left(\frac{F(7)}{P_{o}}\right)^{2} *\left(\frac{T_{0}}{F(8)}\right)^{2}$
$r_{2}=k_{2} * C_{t 0}{ }^{2} * F_{t}^{-2} * F(1) * F(5) *\left(\frac{F(7)}{P_{o}}\right)^{2} *\left(\frac{T_{0}}{F(8)}\right)^{2}$
5
$r_{3}=k_{3} * C_{t 0}{ }^{2} * F_{t}^{-2} * F(3) * F(6) *\left(\frac{F(7)}{P_{o}}\right)^{2} *\left(\frac{T_{0}}{F(8)}\right)^{2}$
$r_{4}=k_{4} * C_{t 0} * F_{t}^{-1} * F(3) *\left(\frac{F(7)}{P_{o}}\right) *\left(\frac{T_{0}}{F(8)}\right)$
$d F_{-} d V(1)=-r_{1}-r_{2}+r_{3}$
$d F _d V(2)=3 r_{1}$
$d F_{-} d V(3)=r_{2}-r_{3}-r_{4}$
$d F _d V(4)=2 r_{4}$
$d F _d V(5)=-r_{1}-r_{2}+r_{3}$
$d F _d V(5)=r_{2}-r_{3}$

5
$d F_{-} d V(7)=-\alpha^{*}\left(\frac{P_{0}}{F(7)}\right) *\left(\frac{F_{t}}{F_{t 0}}\right) *\left(\frac{F(8)}{T_{0}}\right)$
$d F_{-} d V(8)=\frac{U a *\left(T_{a}-F(8)\right)-r_{1} * \Delta H_{1}-r_{2} * \Delta H_{2}-r_{3} * \Delta H_{3}-r_{4} * \Delta H_{4}}{F(1) * C p_{A}+F(2) * C p_{B}+F(3) * C p_{C}+F(4) * C p_{D}+F(5) * C p_{H}+F(6) * C p_{M}}$

Problem 2

(a). Given this information, What species MUST be feed into the reactor to CREATE E? (6 pts)
We must feed either $G+D$ or $A+B+D$
(b). Assuming E is easy to separate from the product stream, list all the species you would CHOOSE to
feed into the reactor to MAXIMIZE E? Explain your answer in a sentence or two. (10 pts)

We would add A, B, D and G. D is necessary to create E. The addition of G pushes the reaction equilibrium, allowing more C to form E rather than G.
(c) Again, assuming E is easy to separate, which species would you consider adding in EXCESS if you
wanted the PFR to MAXIMIZE the amount of E produced? Explain your reasoning? (10 pts)

We would add excess D and G. Excess D ensures that available C will have reactant available. Excess G, as stated in B shifts the reaction equilibrium.

Problem 3

(a) Which figure had $\mathrm{k} 1=\mathrm{k} 2=\mathrm{k} 3=\mathrm{k} 4=0.1 \mathrm{~s}-1$? $(6 \mathrm{pts})$

Figure 1
(b) Which figure had $\mathrm{k} 1=\mathrm{k} 2=\mathrm{k} 3=0.1 \mathrm{~s}-1$, and $\mathrm{k} 4=0.01 \mathrm{~s}-1$? (6 pts)

Figure 4
(c) Which figure had $\mathrm{k} 1=\mathrm{k} 2=\mathrm{k} 4=0.1 \mathrm{~s}-1$, and $\mathrm{k} 3=1 \mathrm{~s}-1$? (6 pts)

Figure 3
(d) Which figure had $\mathrm{k} 1=\mathrm{k} 3=\mathrm{k} 4=0.1 \mathrm{~s}-1$, and $\mathrm{k} 2=1 \mathrm{~s}-1 ?(6 \mathrm{pts})$

Figure 2

