

Fish Distribution, Abundance, and Behavior at Nearshore Habitat Types in Puget Sound, WA, USA

Jason Toft

Wetland Ecosystem Team
School of Aquatic and Fishery Sciences
University of Washington
Seattle, WA, USA

Charles Simenstad
Jeff Cordell
Lia Stamatiou

Funded by the Seattle Public Utilities
Department

PACIFIC SALMON ECOSCAPE, Puget Sound denoting freshwater, estuarine and nearshore habitat continuum

THE WATERSHED-ESTUARY-NEARSHORE CONTINUUM

THE WATERSHED-ESTUARY-NEARSHORE CONTINUUM with watershed and shoreline development

Puget Sound Nearshore

Riparian vegetation in estuarine habitats

Conceptual Model of Marine Riparian Functions

Produced by: GIS& Visual Communications, King County Department of Natural Resources File name: 0109 MarlineRiparianFunction sail

Negative impacts of shoreline modifications:

- Degrading of intertidal habitat and shoreline vegetation
- Discontinuity in aquatic-terrestrial interface

- Sediment supply cut-off

- Reflecting wave energy, loss of vegetation increasing erosion and coarsening sediments increased BULKHEAD scouring sediment supply

FUNCTION OF ESTUARIES IN SUPPORT OF JUVENILE SALMON

- Migration Corridor
 - gateway between watershed to ocean life histories
- Physiological Transition
 - salinity gradient allows physiological adaptation
- Foraging
 - sharp transition in prey organisms
- Refuge from Predation
 - shallow water, turbidity and structural features that provide refuge from predators

VARIABILITY IN ESTUARINE AND NEARSHORE DEPENDENCE BY PACIFIC SALMON

high dependence

ocean type chinook chum ocean type coho (?) pink stream type chinook stream type coho sockeye

low dependence

Salmon Species with Juveniles utilizing the nearshore:

Chinook (Endangered)

Coho

Chum

- Pink, Sockeye, Steelhead trout, Cutthroat trout, bull trout
- Issues of Hatchery versus Wild fish

Green/Duwamish River Chinook
Juvenile Rearing Trajectories

WRIA 9 Juvenile Salmonid Survival Studies 2001

Produced by: King County DNRP GIS & Visual Communications Unit 0404_W0JSS_CHINOOKRear.ai WGAB, LPRE

Historical Perspective

- Increased urban development leading to the degradation of natural habitats.
- 84-97% of the current shoreline is modified by retaining structures.
- Chinook Salmon listed under the Endangered Species Act.
- Nearshore important to juvenile salmon as a rearing and migration corridor to the ocean.

SEPTEMBER 16, 2001

.

Major River Alterations

The Duwamish River Estuary - historically

HISTORIC DREDGING AND FILLING OF THE DUWAMISH RIVER ESTUARY

Shoreline Mapping - Duwamish

Marine Nearshore

DUWAMISH RIVER ESTUARY RESTORATION SINCE 1988

Date Completed

COMPLETE AND ANTICIPATED DUWAMISH RIVER ESTUARY PROJECTS

Study design - "natural" vs. modified

VS.

"vegetated"

"riprap"

Q: How do isolated patches of "natural" nearshore habitat differ from extensively modified reaches?

Preliminary results - beach seining 2004

mean fish abundance

mean fish taxa richness

paired t-test, 2-sided, n = 5

Main Objective:

Quantify the abundance and behavior of juvenile salmonids and other fishes directly along marine shoreline habitat types.

Sampling Techniques

Typical beach seines can be problematic

...better for quantifying directly along shore

Enclosure Nets

Snorkel Surveys

Sampling Methods: High tides 5/12 - 8/1/03

Spring Tides: Enclosure nets and snorkeling - sand, cobble, riprap

Neap Tides: Snorkeling - all sites

Between cobble beaches, sand beaches, and rip-rap that ends at the high intertidal, we see minimal differences all in bottom fishes.

Enclosure Nets: Flatfish (juv. English Sole) at Sand Beaches

Between cobble beaches, sand beaches, and rip-rap that ends at the high intertidal, we see minimal differences all in bottom fishes.

Snorkeling: ↑ Crabs at Cobble Beaches, ↑ Sculpins at Rip-Rap

Less Abundant Fish

When shoreline modifications extend into the subtidal,

we see more differences - in pelagic fishes.

Snorkeling: Overall at Overwater and Deep Rip-Rap, **†**Juvenile Salmonids at Overwater, **†**Surfperches at Deep Rip-Rap

When shoreline modifications extend into the subtidal, we see more differences - in pelagic fishes.

Snorkeling: ↑ Other Nearshore Fishes and Gunnels at Deep Rip-Rap

Salmon Densities and School Sizes:

When shoreline modifications extend into the subtidal, we see differences in juvenile salmonids.

Snorkeling: Juvenile Salmonid species groupings at Overwater and Deep Rip-Rap, also greater school sizes at Overwater (numbers above bars)

Fish Location:

Juvenile salmonids found 70% > 1m away from edge, or 30% at edge, rare underneath Overwater Structures.

Habitat Measurements:

Shoreline modifications truncate the shallow water zone, gradual slope is lost. Pelagic fish that are typically spread-out along a large area may be forced to inhabit deep water directly along shore.

Diet Analysis:

Gastric lavage of juvenile chinook shows less terrestrial/riparian input (insects) at sites with retaining structures at intertidal or supratidal.

Common Juvenile Chinook Prey Items:

INSECTS: Chironomidae

Worms: Polychaete

Amphipods, Corophium sp.

Crustacea: Crab larvae

Chironomid Life Cycle

* Aquatic/Terrestrial Interface *

Prey Resources:

Unretained shorelines have a greater input of terrestrial insects into the diets of juvenile chinook salmon.

Timing and Size:

- As compared to Lake Washington: juvenile chinook avoid armored banks.
- C. TOP CAPUTA

- Juvenile chinook are larger and more pelagic in marine waters, less dependent on shallow water.
- Differences are related more to indirect rather than direct effects of shoreline modifications, such as changes in water depth, substrate, and shoreline vegetation.

Seahurst Park: Just completed!

Remove Rip-Rap and restore intertidal zone, with linkages to riparian habitat

Olympic Sculpture Park: Planned to start this year

Create intertidal and linkages to riparian habitat

Olympic Sculpture Park: Planned to start this year

Future Seawall Repair:

- Replace degraded planks, Gribbles!
- Opportunity to incorporate better materials and designs to improve habitat.

Seattle Waterfront Falling to Gribble Invasion

John Roach

for National Geographic News

April 23, 2004

Flea-sized crustaceans with seven sets of legs, four moving mouth parts, and a voracious appetite for wood-borne bacteria could cause the edge of downtown Seattle, Washington, to slip into the Puget Sound.

