TA: Murat Koyuncu

Please turn in only Questions 1, 3, 5, and 9 (Due 11/16). You can find the answers for the rest on the website.

Try to answer the following questions with the shortest code possible, using mainly MATLAB's built-in functions.

- 1. Create a vector x with the elements ...
 - a. 2, 4, 6, 8, ..., 100
 - b. 10, 8, 6, 4, 2, 0, -2, -4
 - c. 1, 1/2, 1/3, 1/4, 1/5
 - d. 0, 1/2, 2/3, 3/4, 4/5
- 2. Let $x = [2 \ 5 \ 1 \ 6]$.
 - a. Add 16 to each element
 - b. Add 3 to just the odd-index elements
 - c. Compute the square root of each element
 - d. Compute the square of each element
- 3. Let $x = [3 \ 2 \ 6 \ 8]$ ' and $y = [4 \ 1 \ 3 \ 5]$ ' (NB. x and y should be column vectors).
 - a. Add the sum of the elements in x to y
 - b. Raise each element of \boldsymbol{x} to the power specified by the corresponding element in \boldsymbol{y} .
 - c. Divide each element of y by the corresponding element in x
 - d. Multiply each element in x by the corresponding element in y, calling the result "z".
 - e. Add up the elements in z and assign the result to a variable called "w".
 - f. Compute x'*y w and interpret the result
- 4. Create a vector x with the elements,

$$x_n = (-1)^{n+1}/(2n-1)$$

Add up the elements of the version of this vector that has 100 elements.

- 5. Given the array A = [241; 672; 359], provide the commands needed to
 - a. assign the first row of A to a vector called x1
 - b. assign the last 2 rows of A to an array called y
 - c. compute the sum over the columns of A
 - d. compute the sum over the rows of A
 - e. compute the standard error of the mean of each column of A (NB. the standard error of the mean is defined as the standard deviation divided by the square root of the number of elements used to compute the mean.)

- 6. Given the array A = $[2\ 7\ 9\ 7;\ 3\ 1\ 5\ 6;\ 8\ 1\ 2\ 5]$, provide the command that will
 - a. assign the even-numbered columns of ${\tt A}$ to an array called ${\tt B}$
 - b. assign the odd-numbered rows to an array called C
 - c. convert A into a 4-by-3 array
 - d. compute the reciprocal of each element of A
 - e. compute the square-root of each element of A
- 7. Given the vector $\mathbf{x} = [1\ 8\ 3\ 9\ 0\ 1]$, create a short set of commands that will
 - a. add up the values of the elements (Check with sum.)
 - b. compute the running sum (for element j, the running sum is the sum of the elements from 1 to j, inclusive. Check with ${\bf cumsum.}$)
 - c. compute the sine of the given x-values (should be a vector)
- 8. Create an M-by-N array of random numbers (use **rand**). Move through the array, element by element, and set any value that is less than 0.2 to 0 and any value that is greater than (or equal to) 0.2 to 1.
- 9. Write a script that will use the random-number generator ${\bf rand}$ to determine the following:
 - a. The number of random numbers it takes to add up to 20 (or more).
 - b. The number of random numbers it takes before a number between 0.8 and 0.85 occurs.
 - c. The number of random numbers it takes before the mean of those numbers is within 0.01 of 0.5 (the mean of this random-number generator).