
ECON 502 INTRODUCTION TO MATLAB Nov 9, 2007

TA: Murat Koyuncu

0. What is MATLAB?
1

MATLAB stands for matrix laboratory and is one of the most popular software for numerical

computation. MATLAB’s basic data element is an array (or matrix), which makes programming

to solve problems involving vector and matrix formulations (like those found in dynamic

equation systems of macro and econometrics) fairly straightforward.

MATLAB is designed to solve problems numerically, that is, in finite-precision arithmetic.

Therefore it produces approximate rather than exact solutions, and should not be confused with a

symbolic computation system (SCS) such as Mathematica or Maple
2
. It should be understood

that this does not make Matlab better or worse than an SCS; it is a tool designed for different

tasks and is therefore not directly comparable.

The following is a brief introduction to MATLAB aimed at getting you up and running. You

will almost certainly need to spend time at your computer with the MATLAB manual, help tools

of the program itself, and any other reference book you can find on the topic.

1. Finding Your Way Around MATLAB

Double-click on the MATLAB icon on your desktop. The MATLAB Desktop will open—this

is the Graphical User Interface for MATLAB. The desktop you see may include only one

window or may have two or three. One of the windows within the desktop (or the only one you

see) is called the Command window. This is where you will most often interact with MATLAB.

A prompt, >>, is displayed in the Command window followed by a blinking cursor, which lets

you know that MATLAB is ready to accept your commands.

Try typing the following:

>> ex1 = ones(2)

The output should look like this:

ex1 =

 1 1

 1 1

1
 This document is compiled from various resources. So almost all errors are theirs.

2
 Actually, there is a Symbolic Math Toolbox in MATLAB that carries out symbolic computations, but it is much

less sophisticated than Mathematica or Maple.

 2

This represents a 2x2 matrix of ones. Matlab inserts extra blank lines between practically

everything. To turn off this feature, type

>> format compact

To the left of the command window, we see Workspace and Current Directory window. While

the first shows the variables that are currently in MATLAB’s memory, second one simply shows

the contents of the folder that you are working in. The Workspace window shows you the

variables that you have created and, most notably, their dimensions. A variable in the

Workspace is available for use. On the bottom left you have Command History window – this is

where past commands are remembered. If you want to re-run a previous command you can

double click on it from this window (Right click on the command for more options.)

1.1 Help System

Easiest way to get help in MATLAB is to click on the question mark on the toolbar. This invokes

the help system of the software where you could go through the contents of its manual, search for

certain keywords and even watch some demos about how to use MATLAB.

If you know the name of a Matlab function you need help with, type

>> help function-name

to see the help text contained in the function definition itself on Command window. This is a

better method for quick reference.

2. Syntax

Matlab works by executing the mathematical statements you enter in the command window. By

default, any output is immediately printed to the window.

You are also allowed to assign a name to an expression for your convenience. Keep in mind that

the name you assign is only a name, and it does not represent a mathematical variable (as it

would in Maple, for example). Every name must have a value at all times. If you try to read the

value of an unassigned name, you will get an error.

Nearly everything in Matlab is a matrix, whether it looks like it or not. This takes some getting

used to. We'll be introducing matrix-style operations along with their scalar counterparts so you

can understand the patterns that arise in the syntax.

 3

2.1 Simple Math

MATLAB can do simple math just like a calculator; try typing:

>> 10+13

Now hit “Enter”

ans =

 23

MATLAB evaluates the command and returns the answer (ans =). You can also store the

numbers as variables and operate on them:

>> num1 = 10

num1 =

 10

>> num2 = 13;

>> num1 + num2

ans =

 23

Note that MATLAB didn’t show that “num2 = 13” when you entered that variable. The

semicolon at the end of the command line tells MATLAB to evaluate the command but not

display the answer.

Another point is that usage of lowercase/uppercase letters matters in MATLAB:

>> Num1-10

??? Undefined function or variable 'Num1'.

Standard order of operations would apply when a string of calculations are typed up.

>> 3^2*4-1

ans =

 35

 4

So use parenthesis if you need a certain order:

>> (ans+1)/4

ans =

 9

2.2 Built-in Functions

MATLAB has hundreds of pre-defined functions that you can use in your computations. Among

them are: trigonometric and inverse trigonometric functions (sin, cos, asin, acos,

atan, etc.), exponential function (exp), logarithm functions (log is log to base e, while

log10 and log2 are logs to bases 10 or 2.)

Matlab also has many other more sophisticated functions for solving linear equations, getting

eigenvalues of matrices, solving differential equations or calculating integrals numerically. Help

button is your friend!

3. Vectors and Matrices

 Matlab is most used to work with matrices and vectors. Vectors are either row vectors or column

vectors and it is usually important to be clear as to what kind of vector you mean.

� To create a row vector enter the name for the vector and the elements of the vector separated

by spaces (or commas) surrounded by square brackets.

>> A = [1 2 3]

� To create a column vector, separate each element by a semicolon.

>> B = [4;5;6]

� To enter a matrix, combine the row and column notation.

>> C = [1 4 9;8 4 7;2 6 3]

C =

 1 4 9

 8 4 7

 2 6 3

>> G = [4 2 8;5 9 1;4 1 3];

 5

� To extract parts of a matrix you can use one of the following commands:

- to display (or operate) on a particular element, row, or column of a matrix use its

address. The general syntax is matrixname(row#,column#).

>> C(2,3) %Displays the element in the 2nd row and 3rd

column of C.

ans =

 3

Note that anything typed after a % sign is not evaluated. **Use this feature frequently when

writing programs in MATLAB!

>> C(:,3) %Displays the 3rd column of C

>> C(2,:) %Displays the 2nd row of C

The colon tells MATLAB to include all rows or columns.

- To extract a smaller sized matrix from an existing matrix use the address of the

desired elements:

>> C(1:2,2:3) %Displays the first two elements of the 2nd

and third column

 ans =

4 9

4 7

 - To extract the main diagonal use the diag() command:

>> Cdiag = diag(C)

Cdiag =

 1

4

3

� To delete rows and columns from a matrix use just a pair of square brackets:

 6

>> C(:,2)=[]

C =

 1 9

 8 7

 2 3

� Three special matrices that you’ll often use are the zero matrix, the identity matrix and

matrixes/vectors of ones.

>> D=zeros(3,3) %displays a 3x3 matrix of zeros

>> E=eye(4,4) %displays a 4x4 identity matrix

>> F=ones(3,1) %displays a 3x1 matrix of ones

3.1 Manipulating Matrices

The symbols for basic arithmetic operations with matrices are:

+ for addition—e.g., >> C+G

- for subtraction—e.g., >> C-G

* for multiplication—e.g., >> C*G

inv() for inverting a matrix:

>> Cinv = inv(C)

Cinv =

 -0.1034 0.1448 -0.0276

 -0.0345 -0.0517 0.2241

 0.1379 0.0069 -0.0966

/ or \ for division—e.g., >> C/G or G\C for “right” division or “left” division

Note that matrices must be conformable for these operations to be defined. Also note that C/G

= C*inv(G) and that G\C = inv(G)*C, which are generally not the same.

 7

Other useful operators include:

’ for transposition—e.g., >> C’

det() for the determinant—e.g., >> det(G)

trace() for the trace—e.g., >> trace(G)

eig() for the eigenvalues—e.g., >> eig(G)

3.1.1 Concatenation:

MATLAB can easily join matrices together to make a larger matrix:

>>A=[3 7 4;5 9 2;4 6 1];

>>B= [A A+12; A*3 A/2]

B =

 3.0000 7.0000 4.0000 15.0000 19.0000 16.0000

 5.0000 9.0000 2.0000 17.0000 21.0000 14.0000

 4.0000 6.0000 1.0000 16.0000 18.0000 13.0000

 9.0000 21.0000 12.0000 1.5000 3.5000 2.0000

 15.0000 27.0000 6.0000 2.5000 4.5000 1.0000

 12.0000 18.0000 3.0000 2.0000 3.0000 0.5000

3.1.2 Element-by-Element Operations

Sometimes it’s useful to have MATLAB perform an operation on each element of a matrix. For

example,

>>A^2 %Performs the usual matrix multiplication A*A

>>A.^2 %Squares each element of the matrix A

MATLAB can also perform element-by-element multiplication—e.g., A.*2 – and division—

e.g., A./2 (or equivalently, 2.\A).

 8

3.2 Solving Linear Equations

X = A\B: Denotes the solution to the matrix equation AX = B.

X = B/A: Denotes the solution to the matrix equation XA = B.

4. Writing Simple Programs

The capabilities of Matlab can be extended through programs written in its own programming

language. It provides the standard constructs, such as loops and conditionals; these constructs

can be used interactively to reduce the tedium of repetitive tasks, or collected in programs stored

in ``m-files'' (nothing more than a text file with extension ``.m'').

4.1 Script M-files

If you just want to enter in some simple problems for MATLAB to solve, using the Command

window is fast and easy. But you will often have a long sequence of commands on many

variables for MATLAB to evaluate—sometimes for hundreds of repetitions! MATLAB allows

you to type your commands in a text file, called a script or M-File, and then have the commands

in the M-file evaluated just as if they were entered in the Command window.

To create an M-File, click on the New M-file icon on the MATLAB desktop toolbar, or choose

New/M-File from the File menu. You can use the text window that appears to enter commands.

Try entering

%M-file example, 10/09/07; written by yourname

num1 = 10

num2 = 13;

num1+num2

A=[1 2 3]

Now click the Run icon on the toolbar to execute your commands. MATLAB asks you to save

your file before it is run; use the Save file as: dialog box to name and save your file. In the

CSSCR lab, save your M-File to the /temp folder. (MATLAB may open a dialog box asking

about your Current Directory, if so, select the option that changes your Current Directory to the

/temp folder where you’ve saved your M-File.)

The results of running your M-File appear in the MATLAB command window.

4.2 For Loops

A For Loop executes a set of commands a given number of times. Try running this simple

program from an M-File:

 9

clear; %this clears all variables from the workspace

n=10;

beta=zeros(n,1); %Create an nx1 vector to hold Beta vector

for i=1:n %set # of times to execute the following commands

 beta(i,1)=i+1; %formula for the ith element of beta

end %end the For loop

beta %print beta in the command window

4.3 While Loops

A While Loop executes a set of commands repeatedly, until a controlling expression is no longer

true.

clear;

b=0;t=0; %Enter the initial values of variables b and t

while 2^b<200 %Enter the controlling expression

 b=b+1;

 t=t+2^b; %These two lines are the commands to be executed

end %End the While Loop

4.4 If-Else-End Conditional

The If-Else-End construct evaluates a logical expression and executes a command, or group of

commands, based on the value of that expression. Try running this simple program from an M-

File:

clear;

b=randn; %pick b from the N(0,1) distribution

 10

if b>0

 count=1; %The variable count will be equal to 1 if b>0

else

 count=0; %count is zero otherwise

end

count %show count in the command window

These constructs can be used together, or nested within themselves and/or one another, allowing

you to write powerful programs in which the results of past calculations affect subsequent

operations.

4.5 The Current Directory and Search Path

To use an M-File that you have created, MATLAB needs to know where to find it. MATLAB

looks on a Search Path so you need to make sure that the directory in which you saved your M-

File is on this path. The easiest way to do this is to make the directory in which you’ve saved

your M-File the Current Directory.

Alternatively, you can put that directory on the Search Path by selecting Set Path in File menu

or by typing the following in the Command window:

>> path(path, ‘directory’)

For example in the Econ grad computer lab you would type

>> path(path, ‘z:\’) when logged on with your userid.

4.6 Function M-Files

These M-Files differ from the script M-Files you’ve been working with in that they accept input

arguments and return output arguments. A Function M-File operates on variables contained

within its own workspace, which is separate from the workspace you’ve been accessing from the

command line or through script M-Files. To write a function M-File, open a new M-File and

type the following:

function x=test1(a,B) %x is the output argument from

 %the function "test1"; a and b

 11

 %are its input arguments

x=a'*B*a+23 %define x as a function of the input arguments

Now save your function M-File—you must save your file with exactly the same name you gave

the function—test1.m in this example (make sure you save it to either the current directory or a

directory that is on the search path). In the command window, enter any conformable “a” and

“B” (note: you do not need to name them “a” and “B”—the function will operate on any

conformable inputs that you give it). In the command window type the following:

>>c=[2;3];

>>D=[3 6;8 4]; %c and D are the input arguments for test1

Now call your function by typing

>>test1(c,D);

x =

 155

5. Plotting Graphs

MATLAB has powerful graphing features. To get started plotting graphs, try this example of a

simple 2-D graph.

n=150;

h=1/n;

x=0:h:1; %this means x starts at 0, and goes to 1

 %by increments of h

y=sin(2*pi*x);

plot(x,y) %The plot command

title('Graph of y=sin(2pix)') %Give the graph a title

xlabel('x axis'); ylabel('y axis') %Label the axes

When the graph appears, use the menu and toolbar to modify it and/or copy and paste it into a

Word document.

 12

6. Working With Data

You will certainly need to export your results from MATLAB or import data from other sources.

Let’s start by saving some of what we did until now. The basic command format is the save

command followed by the name of the file to create. This is followed by a list of the variables

which are to be saved in the file. To create an ASCII file which can be read by a spreadsheet the

list of variables is followed by the command –ascii.

>> save exampleFile A B C This saves the A, B, and C variables in a MATLAB data

file (with .mat extension) in the current directory.

>> save C:/exampleFileAll -ascii This saves all variables in the Workspace

in a ASCII file in the directory C.

Now let’s clear all variables in the workspace:

>> clear all

Loading data from a .mat file is easy. Just use ’load’ instead of the command ’save’.

>> load exampleFile A B

Note that you can choose which variables to load. This command loads only A and B, if you

wanted to load all variables you could simply write “load exampleFile”.

A quick method of importing text or binary data from a file (e.g., Excel files) is to use the

MATLAB Import Wizard. Open the Import Wizard by selecting File -> Import Data at the

Command Window.

Specify or browse for the file containing the data you want to import and you will see a preview

of what the file contains. Select the data you want and click Finish. (For more information, see

Help file for ‘Importing Text Data’)

