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The relation between entropy, information, and randomness is discussed. Algorithmic information
theory is introduced and used to provide a fundamental definition of entropy. The relation between
algorithmic entropy and the usual Shannon—Gibbs entropy is discussethog9@merican Association

of Physics Teachers.

[. INTRODUCTION have recorded might as well have come from coin tosses and

. . . . 8000 days of weather will require 8000 ones and zeros. A
In this article, | review the connections between entropy .

. : ; typical record might look like

information, and computation. The advent of mass-marke

computer technology means that students are now comfor6011101100101110001100110000111101101011110100000
able with the notion that information is physical and quanti-

tatively measurable. Students are familiar with the idea that 10010001101000...

definite amounts of information may be stored in digital form_We say that the information content of the data set is 8000

. . ; bits, 1 bit per day. In computer jargon 8 bits is 1 byte, so we
memory. Thus_, 'Uforma“of‘ can provide a useful handle forwould nerfd 1 ki)I/obyte ofpspacé o% a hard disk tg store the
beginning statistical physics students struggling to unolerE:iata. A crucial point is that because the data is random and

stand the meaning of entropy. A discussion of the reIat'oni/vithout pattern, there is almost certainly no way to compress

ship between information and entropy also gives students a0 less than 1 kilobyte
interdisciplinary perspective by showing that concepts cen- Next, consider the very different climate of Tucson, Ari-

tral to statistical physics also appear in fields such as electr'Eona_ Let us again suppose that every day is independent, but

cal engineering, computer science, and statistics. oo ;
. . i . that it rains only 1 day out of 31 on the average. A typical
The history of the relationship between entropy, mforma—recorol might look like

tion, and c_ompu_tation goes back to the first half of the 20th
century with Szilard's analysis of Maxwell's Demband  000000000000000000000000100000000000000000000000
Shannon’s work on communication thedrylayned and

Brillouin® sought to place statistical mechanics on an infor- ~ 000000000000000...

mation theoretic foundation. Shannon’s definition of infor- sina the same encoding as before. we would need the same

mation is probabilistic and applies to ensembles of messagerg, kilgb te for 8000 dags of weatHer However. a tvpical

just as the usual definition of entropy applies to statistical Y ) y ' ' yp
record will be dominated by zeros, and there are more com-

ensembles of microstates. A definition of the information act wavs of storing the Tucson data by taking advantage of
content of individual objects was independently develope Y g the. Dy 9 g€
he knowledge that rain is rare. Here is one approach. Divide

by Solomonoff; Kolmogorov? and Chaitit® and shown to the record into 31-day intervals and for each interval indicate
be intimately related to Shannon’s probabilistic definition.. . ; Y Inte o . .
in binary on which days, if any, it rained. The binary code is

Based on this equivalence, Benfiethd Zurek®!!advanced _
the notion that the entropy of individual microstates of physi-2> follows: the word 11111 marks the end of each 31 day

, o o . interval, the word 00001 means rain on day one of the inter-
fgls‘?r?gg]s could be defined. This viewpoint is adopted Iri/al, 00010 means rain on day two, 00011 means rain on day

The foregoing developments are not usually treated in in:‘:’1 ,rl:?itr:grf/owoer;tr?grt :gctlré1(?a\rl1vrl])ighstr2feadnisnr?ri?sOvca?/ayBgcl:éﬁsne
troductory statistical physics books. An exception is Baiery, .o " e '8000/31 month dividers and about 8000/31
lein’s text; which presents the subject of statistical mechan—rain days, we will need abo8000/31x5x2 bits or 0.32
ics at an elementary level using Shannon information theor¥) y days, )

as its basis. A recent resource letter in this publicafipno-

its per day. This amount is much better than 1 bit per day,
vides a bibliography on information theory in physics. although it is not the optimum compression. As we shall see,

the best compression is about 0.21 bits/day.

To summarize, we say that the information content of a
Il. WHAT 1S INFORMATION? record is the number of bif®nes or zergsneeded to encode

The information content, measured in bits, of a text doculhe record in the most efficient possible way. This definition
ment, audio recording, or data file is the number of ones ané formalized by algorithmic information thedhand we will
zeros needed to store the text, sound, or data using the mdéffer to information measured this way as algorithmic infor-
efficient digital encoding. As an example, consider a table ofmation content. An arbitrary sequenseof zeros and ones
climate data. For simplicity, suppose that we have recordetias an algorithmic information conteKt(s) that is defined
only whether it has rained or not on a given day. A zeroto be the size, in bits, of the smallest computer program that
signifies “no rain” and a one signifies “some rain.” First, can be run to print out the sequence. The notion of program
suppose we have a long data set for a rainy location likés used broadly here to include both the instructions for the
Seattle. We simplify the example by assuming that every dagomputer and the data file. Thus, in the above weather ex-
is independent of the previous days, and there is a 50% prolample we should have also included the space taken by the
ability that it will rain on every day. The weather data we instructions. For the example of Seattle, these instructions
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are very simple because the data were not compressed. Fesme rain, with probabilitieg, and p,. For Seattle,p,
the Tucson example, the instructions involve the decompres=p,=1/2, so according to the Shannon formula,

sion of the data according to the stated rules. In both casep= —[(1/2)l0g,(1/2)+ (1/2)log(1/2)]=1 bit per day. The
the instructions are a negligible contribution for large dataghannon information and the algorithmic information agree
sets. Although there are ambiguities about the choice of; 1 pit per day. For the Tucson exampfg,=30/31 and

computer used to print out the sequence, for a broad class qf _ Z
“universal” computers, these difference appear as additiveB: 10 Zlféi'tsS;elr day[(30/31)log(30/31)+(1/31)Iog2(1/31)]

constants and become unimportant for large data sets. - . . .
P 9 On the face of it, the two definitions of information appear

Algorithmic information is sometimes called algorithmic diff t The Sh inf ton i lculated f
randomness. Some simple examples illustrate the relatio,cTY dferent. The snannon information IS caiculated from a

ship between information and randomness. First consider gefiniye formula involving probabilities. It is not applicable
string of N ones. This string has very little information con- 0 a single sequence of ones and zeros but only to a statistical

. . . nsemble of such sequences. Algorithmic information con-
tent becau;e the |nstruc.t|ons to the computer are a s!mple 8nt is applicable to aqsingle sequ%nce but cannot be calcu-
'°°P’. Fori=1 tp N, print 1 and the_n stop. The;re 1SN0 |ated by a formula or any definite procedure because it de-
additional data file to be read. A string df ones is com- pends on finding the best way to compress the Hata.
pletely ordered and not at all random. On the other hand, thRonetheless, there is a close connection between the two
result of N coin tosses has an algorithmic information con- yefinitions. Given an ensemble of possible messagesith

tent that is typically abouN because there is usually no associated probabilitigs; , a fundamental result of algorith-
compression of the data possible, and it is necessary to stofgjc information theory is that

the entire data file. For a typical random string the instruc-

tions are simple, “Foii =1 to N, print recordi in the data (Ky=l, @
file and then stop,” but the data file has a size of order  where the average algorithmic information is defined by
The results of random processes usually have high informa-

tion content. It is possible, however, for a coin to be todsed (Ky=">, piK(s), 3
times and yield\ heads or some other ordered pattern with i

little information content. Not all sequences that appear to be 4 is the Shannon information defined in Ed). Equation

random have a high algorithmic information content. For €X-(2) is an approximate equality. Differences between the right

ample, the firsiN bits of the binary expressions for or € 5nq |eft sides come from the choice of universal computer
look random and pass most statistical tests of randomnesgng from a term involving the algorithmic information re-

but they have _I|ttle algquthmlc |nformat|pn content becauseyired to specify the probabilitiéd.For equilibrium statisti-

there are concise algorithms for computing these numbers {8y mechanics, the probabilities are concisely defined and

arbnrary_preqsyon. On Fhe other hand, any sequence that h"i‘?pical amounts of information are large, and hence @y.

an algorithmic information content comparable to the lengthg essentially exact.

of the sequence will appear to be random and will pass all

statistical tests of randomness. Thus, algorithmic information

is sometimes called algorithmic randomness. Randomnesd. WHAT IS ENTROPY?

and information are formally the same thing. If we want to

emphasize the utility or value of some data, we speak of Inthermodynamics, entropy is an extensive quantity asso-

information content. If we want to emphasize a lack of pat-Ciated with a system in equilibrium. Entropy may be added

tern or order in some data, we speak of randomness. A higr removed from a system by adding or removing heat. If the

algorithmic information content does not imply that the datasystem remains near equilibrium, the entropy change is equal

are meaningful or useful. to the heat transfer divided by the absolute temperature,
There is a second definition of information that is formally AS=Q/T (4)

the same as the standard definition of entropy in statistical '

mechanics. This definition is due to Shanhamd arose in WhereS s the entropyQ is the heat transfer into the system,

his analysis of the capacity of communications channelsandT is the absolute temperature. For irreversible processes,

Suppose that there al possible messages labelsgd, i the entropy must obey the second law which says that the

=0,1, W-—1, that can be sent and that the probability thatentropy of an isolated system may never decrease.

s, is sent isp; . Then, the information conteitper message The conventional ensemble definition of entropy in statis-

transmitted is tical mechanics is due to Gibbs. Suppose a system can be in
one of a large number of microstates. In quantum mechanics,
w-1 a microstate is specified by giving a complete list of the
l=- Z p; log, p; . (1) guantum numbers of the system. In classical mechanics, it is
=0

the location in phase space— the positions and momenta of

. . . all the particles in the system. Suppose that the probability of

We calll in Eq. (1.) the Shannon mformatl.o.n. a system being in microstaieis p;. In the canonical en-
The Shannon information has an additive property. If a : b

: X - . semble, this probability is

message is composed of pieces that are statistically indepen-

dent, then the information content of the entire message is e EilkeT

the sum of the information content of the pieces. For the pi:—z , ®

example of weather data, each day’s record is statistically _ _ _

independent, so the information content of the entire recorévhereE; is the energy of the microstatkg is Boltzmann’s

is simply 8000 times the information content from 1 day. Forconstant, and is the partition function, which is needed to

1 day there are two possible messages, 0 for no rain and 1 fmormalize the probabilities. In the microcanonical ensemble,

1075 Am. J. Phys., Vol. 67, No. 12, December 1999 J. Machta 1075



all the p; are equal for microstates with; in a narrow range enserr_\ble-averaged algorithmic entropy will be the same as
near the thermodynamic energy while outside of that rangghe Gibbs entropy and thus a faithful representation of the

the p; vanish. thermodynamic entropy.
The Gibbs entropy is given by The algorithmic entropy is now taken as the fundamental
theoretical definition of entropy. For calculations we will still
S=—kg> piInp;, ) use ensemble methods but now with algorithmic entropy as a
1

foundation. Because we have no information about a system

other than a few thermodynamic variables, we choose a

probability distribution according to the maximum entropy
inciple. Given these probabilities we calculate averages of

where the summation is over all possible microstates avail
able to the system. Note that this definition encompasses t

earlierldefinitiol?I proposed by Boltzmann for the microca—physical quantities. The average entropy, defined in(Bg.
nhonical ensemble, is evaluated using Eq2). This way of thinking puts entropy
S=kgInQ, (7) on nearly the same footing as other extensive quantities such
. e . . as energy. The entropy has a defiriteough uncomputable
where () 'z the “statistical V‘.’eh'ght' the number of mi- Hvalue for a physical system but, because of our lack of in-
crostates having energies within a narrow range near thg, aiion we ‘actually calculate an average value over an

thermodynamic energy. Because in the microcanonical ens,qemple. Because statistical mechanics ensembles for mac-

semble, each state in the energy range has the same proba gécopic systems are very sharply peaked, the average is a

ity, this probability must be I and because there afe very accurate estimate of the actual value.

equal terms in the sum, E¢F) reduces to Eq(7). Standard g jjystrate these ideas, consider the entropy of an ideal
arguments show that the Gibbs entropy has the properti&sonatomic quantum gas obeying Maxwell-Boltzmann sta-
required of entropy by thermodynamics. tistics. The gas consists of atoms of massn in a box of

Extensive quantities such as the number of particles or thsolumev. The microstates are defined by the occupancies of

energy have definite values for individual microstates, but.. . : N
the Gibbs entropy is defined only for statistical ensembles%é?ﬂﬁlgis;ctlﬁ quﬁtnrt(;g; Iiivels in the box. The Sakur—Tetrode

Indeed, if a macroscopic system could be prepared in a defi-

nite microstate, the unsettling implication of E§) is that it V(mksT\%2] 5
would have zero entropy. Is there a way to define the entropy  S=kgNIn —(—2) + =kgN. (8
of an individual microstate of a system? N 27h 2

For 1 mole of*He at 300 K confined to one liter, the entropy
IV. ENTROPY AND INFORMATION is about 100 J/K. The interpretation of this result is that a
complete description of a single microstate would, on aver-

A comparison of Egs(1) and(6) reveal that the Shannon age, requireS/k=100/9.57 10~ 2~ 10?° bits, or about 17
information and the Gibbs entropy are formally the samepits per atom. Note that the natural microscopic unit for en-
except for a constant factok=kg/log,e=9.57<10"**  tropy is the bit. The Sakur—Tetrode formula is usually de-
J/IK~1bit™L. How should we interpret this coincidence? rived from the Gibbs entropy but can also be derived directly

Brillouin and Jaynes developed the point of view that en-from the algorithmic entropy.
tropy is a measure of our lack of information about the mi- The algorithmic view is useful in clarifying situations
crostate of a system. Probabilities must be assigned to miwhere some of the degrees of freedom of a physical system
crostates because we do not know what microstate thare “information bearing.” As a specific example, consider
system is in. The missing information is the information thatthe analysis of a 1-gigabyte hard disk drive. The heart of this
would be gained if a complete measurement is made on theevice is a metal disk coated with a film of magnetic mate-
system so that the exact microstate is known. The informarial. Like any macroscopic object, this disk has a huge num-
tion gained in this way is, on average, the Shannon informaber of degrees of freedom. Of these degrees of freedom, a
tion or, up to a constant, the Gibbs entropy. The correctiny fraction, roughly 8<10° (corresponding to 1 gigabyte
assignment of probabilities should be made in such a wayre information-bearing degrees of freedom which can be
that no unjustified assumptions about the system are buikead or modified. The information-bearing degrees of free-
into the probabilities. Probabilities are assigned by buildingdom are collective variables, referring to the magnetization
in what is known about the system and then maximizing theof many electrons in a specific region on the disk. Reading
missing information. This prescription for assigning prob- (writing) is done by a head that rides over the surface of the
abilities is useful in various applications of statistics and haslisk measuring (changing the magnetization. The
become known as the maximum entropy principle. As apinformation-bearing degrees of freedom contribute to the al-
plied to statistical mechanics, it yields the microcanonical orgorithmic entropy in exactly the same way as all the other
canonical ensembles. For example, if the Gibbs entropy iglegrees of freedom.
maximized holding the average energy fixed, the resulting Suppose that the hard drive is initially filled with a record
distribution is the canonical ensemble. which is the result of 8 billion coin tosses. The entropy as-

The thesis that entropy is missing information is unsatissociated with the information-bearing degrees of freedom
factory because it makes entropy a subjective rather than agill be «(8x10% bits. Suppose that the disk is erased,
objective property of physical systems. | favor a viewpointmeaning that the disk is restored to some simple state with
espoused by Bennett and Zurek that makes entropy an objegery little algorithmic information. We conclude that the en-
tive property of physical systems. Suppose that a completgopy of the drive has decreased. To satisfy the second law,
description of the microstateof a system has an algorithmic an equal or greater increase in entropy must have occurred
information contenk(s). Define the algorithmic entropy of elsewhere. If the process occurs near equilibrium at tempera-
microstate s as «K(s). Equation (2) insures that the ture T, then according to Eq(4) a tiny amount of heat
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