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The relation between entropy, information, and randomness is discussed. Algorithmic information
theory is introduced and used to provide a fundamental definition of entropy. The relation between
algorithmic entropy and the usual Shannon–Gibbs entropy is discussed. ©1999 American Association

of Physics Teachers.

I. INTRODUCTION

In this article, I review the connections between entropy,
information, and computation. The advent of mass-market
computer technology means that students are now comfort-
able with the notion that information is physical and quanti-
tatively measurable. Students are familiar with the idea that
definite amounts of information may be stored in digital form
on hard drives and other storage media and in dynamic
memory. Thus, information can provide a useful handle for
beginning statistical physics students struggling to under-
stand the meaning of entropy. A discussion of the relation-
ship between information and entropy also gives students an
interdisciplinary perspective by showing that concepts cen-
tral to statistical physics also appear in fields such as electri-
cal engineering, computer science, and statistics.

The history of the relationship between entropy, informa-
tion, and computation goes back to the first half of the 20th
century with Szilard’s analysis of Maxwell’s Demon1 and
Shannon’s work on communication theory.2 Jaynes3 and
Brillouin4 sought to place statistical mechanics on an infor-
mation theoretic foundation. Shannon’s definition of infor-
mation is probabilistic and applies to ensembles of messages,
just as the usual definition of entropy applies to statistical
ensembles of microstates. A definition of the information
content of individual objects was independently developed
by Solomonoff,5 Kolmogorov,6 and Chaitin7,8 and shown to
be intimately related to Shannon’s probabilistic definition.
Based on this equivalence, Bennett9 and Zurek10,11advanced
the notion that the entropy of individual microstates of physi-
cal systems could be defined. This viewpoint is adopted in
this article.

The foregoing developments are not usually treated in in-
troductory statistical physics books. An exception is Baier-
lein’s text,13 which presents the subject of statistical mechan-
ics at an elementary level using Shannon information theory
as its basis. A recent resource letter in this publication12 pro-
vides a bibliography on information theory in physics.

II. WHAT IS INFORMATION?

The information content, measured in bits, of a text docu-
ment, audio recording, or data file is the number of ones and
zeros needed to store the text, sound, or data using the most
efficient digital encoding. As an example, consider a table of
climate data. For simplicity, suppose that we have recorded
only whether it has rained or not on a given day. A zero
signifies ‘‘no rain’’ and a one signifies ‘‘some rain.’’ First,
suppose we have a long data set for a rainy location like
Seattle. We simplify the example by assuming that every day
is independent of the previous days, and there is a 50% prob-
ability that it will rain on every day. The weather data we

have recorded might as well have come from coin tosses and
8000 days of weather will require 8000 ones and zeros. A
typical record might look like

0011101100101110001100110000111101101011110100000

10010001101000...

We say that the information content of the data set is 8000
bits, 1 bit per day. In computer jargon 8 bits is 1 byte, so we
would need 1 kilobyte of space on a hard disk to store the
data. A crucial point is that because the data is random and
without pattern, there is almost certainly no way to compress
it to less than 1 kilobyte.

Next, consider the very different climate of Tucson, Ari-
zona. Let us again suppose that every day is independent, but
that it rains only 1 day out of 31 on the average. A typical
record might look like

000000000000000000000000100000000000000000000000

000000000000000...

Using the same encoding as before, we would need the same
1 kilobyte for 8000 days of weather. However, a typical
record will be dominated by zeros, and there are more com-
pact ways of storing the Tucson data by taking advantage of
the knowledge that rain is rare. Here is one approach. Divide
the record into 31-day intervals and for each interval indicate
in binary on which days, if any, it rained. The binary code is
as follows: the word 11111 marks the end of each 31 day
interval, the word 00001 means rain on day one of the inter-
val, 00010 means rain on day two, 00011 means rain on day
3, and so on, out to 11110 which means rain on day 31. An
arbitrary weather record can be stored in this way. Because
there will be 8000/31 month dividers and about 8000/31
rainy days, we will need about~8000/31!3532 bits or 0.32
bits per day. This amount is much better than 1 bit per day,
although it is not the optimum compression. As we shall see,
the best compression is about 0.21 bits/day.

To summarize, we say that the information content of a
record is the number of bits~ones or zeros! needed to encode
the record in the most efficient possible way. This definition
is formalized by algorithmic information theory8 and we will
refer to information measured this way as algorithmic infor-
mation content. An arbitrary sequences of zeros and ones
has an algorithmic information contentK(s) that is defined
to be the size, in bits, of the smallest computer program that
can be run to print out the sequence. The notion of program
is used broadly here to include both the instructions for the
computer and the data file. Thus, in the above weather ex-
ample we should have also included the space taken by the
instructions. For the example of Seattle, these instructions
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are very simple because the data were not compressed. For
the Tucson example, the instructions involve the decompres-
sion of the data according to the stated rules. In both cases,
the instructions are a negligible contribution for large data
sets. Although there are ambiguities about the choice of
computer used to print out the sequence, for a broad class of
‘‘universal’’ computers, these difference appear as additive
constants and become unimportant for large data sets.

Algorithmic information is sometimes called algorithmic
randomness. Some simple examples illustrate the relation-
ship between information and randomness. First consider a
string of N ones. This string has very little information con-
tent because the instructions to the computer are a simple do
loop, ‘‘For i 51 to N, print 1 and then stop.’’ There is no
additional data file to be read. A string ofN ones is com-
pletely ordered and not at all random. On the other hand, the
result of N coin tosses has an algorithmic information con-
tent that is typically aboutN because there is usually no
compression of the data possible, and it is necessary to store
the entire data file. For a typical random string the instruc-
tions are simple, ‘‘Fori 51 to N, print recordi in the data
file and then stop,’’ but the data file has a size of orderN.
The results of random processes usually have high informa-
tion content. It is possible, however, for a coin to be tossedN
times and yieldN heads or some other ordered pattern with
little information content. Not all sequences that appear to be
random have a high algorithmic information content. For ex-
ample, the firstN bits of the binary expressions forp or e
look random and pass most statistical tests of randomness,
but they have little algorithmic information content because
there are concise algorithms for computing these numbers to
arbitrary precision. On the other hand, any sequence that has
an algorithmic information content comparable to the length
of the sequence will appear to be random and will pass all
statistical tests of randomness. Thus, algorithmic information
is sometimes called algorithmic randomness. Randomness
and information are formally the same thing. If we want to
emphasize the utility or value of some data, we speak of
information content. If we want to emphasize a lack of pat-
tern or order in some data, we speak of randomness. A high
algorithmic information content does not imply that the data
are meaningful or useful.

There is a second definition of information that is formally
the same as the standard definition of entropy in statistical
mechanics. This definition is due to Shannon2 and arose in
his analysis of the capacity of communications channels.
Suppose that there areW possible messages labeledsi , i
50,1,

...,

W21, that can be sent and that the probability that
si is sent ispi . Then, the information contentI per message
transmitted is

I 52 (
i 50

W21

pi log2 pi . ~1!

We call I in Eq. ~1! the Shannon information.
The Shannon information has an additive property. If a

message is composed of pieces that are statistically indepen-
dent, then the information content of the entire message is
the sum of the information content of the pieces. For the
example of weather data, each day’s record is statistically
independent, so the information content of the entire record
is simply 8000 times the information content from 1 day. For
1 day there are two possible messages, 0 for no rain and 1 for

some rain, with probabilitiesp0 and p1 . For Seattle,p0

5p151/2, so according to the Shannon formula,
I 52@(1/2)log2(1/2)1(1/2)log2(1/2)#51 bit per day. The
Shannon information and the algorithmic information agree
at 1 bit per day. For the Tucson example,p0530/31 and
p151/31, so I 52@(30/31)log2(30/31)1(1/31)log2(1/31)#
50.21 bits per day.

On the face of it, the two definitions of information appear
very different. The Shannon information is calculated from a
definite formula involving probabilities. It is not applicable
to a single sequence of ones and zeros but only to a statistical
ensemble of such sequences. Algorithmic information con-
tent is applicable to a single sequence, but cannot be calcu-
lated by a formula or any definite procedure because it de-
pends on finding the best way to compress the data.14

Nonetheless, there is a close connection between the two
definitions. Given an ensemble of possible messages,si with
associated probabilitiespi , a fundamental result of algorith-
mic information theory is that

^K&>I , ~2!

where the average algorithmic information is defined by

^K&5(
i

piK~si !, ~3!

andI is the Shannon information defined in Eq.~1!. Equation
~2! is an approximate equality. Differences between the right
and left sides come from the choice of universal computer
and from a term involving the algorithmic information re-
quired to specify the probabilities.15 For equilibrium statisti-
cal mechanics, the probabilities are concisely defined and
typical amounts of information are large, and hence Eq.~2!
is essentially exact.

III. WHAT IS ENTROPY?

In thermodynamics, entropy is an extensive quantity asso-
ciated with a system in equilibrium. Entropy may be added
or removed from a system by adding or removing heat. If the
system remains near equilibrium, the entropy change is equal
to the heat transfer divided by the absolute temperature,

DS5Q/T, ~4!

whereS is the entropy,Q is the heat transfer into the system,
andT is the absolute temperature. For irreversible processes,
the entropy must obey the second law which says that the
entropy of an isolated system may never decrease.

The conventional ensemble definition of entropy in statis-
tical mechanics is due to Gibbs. Suppose a system can be in
one of a large number of microstates. In quantum mechanics,
a microstate is specified by giving a complete list of the
quantum numbers of the system. In classical mechanics, it is
the location in phase space— the positions and momenta of
all the particles in the system. Suppose that the probability of
a system being in microstatei is pi . In the canonical en-
semble, this probability is

pi5
e2Ei /kBT

Z
, ~5!

whereEi is the energy of the microstate,kB is Boltzmann’s
constant, andZ is the partition function, which is needed to
normalize the probabilities. In the microcanonical ensemble,

1075 1075Am. J. Phys., Vol. 67, No. 12, December 1999 J. Machta



all thepi are equal for microstates withEi in a narrow range
near the thermodynamic energy while outside of that range,
the pi vanish.

The Gibbs entropy is given by

S52kB(
i

pi ln pi , ~6!

where the summation is over all possible microstates avail-
able to the system. Note that this definition encompasses the
earlier definition proposed by Boltzmann for the microca-
nonical ensemble,

S5kB ln V, ~7!

where V is the ‘‘statistical weight,’’ the number of mi-
crostates having energies within a narrow range near the
thermodynamic energy. Because in the microcanonical en-
semble, each state in the energy range has the same probabil-
ity, this probability must be 1/V and because there areV
equal terms in the sum, Eq.~6! reduces to Eq.~7!. Standard
arguments show that the Gibbs entropy has the properties
required of entropy by thermodynamics.

Extensive quantities such as the number of particles or the
energy have definite values for individual microstates, but
the Gibbs entropy is defined only for statistical ensembles.
Indeed, if a macroscopic system could be prepared in a defi-
nite microstate, the unsettling implication of Eq.~6! is that it
would have zero entropy. Is there a way to define the entropy
of an individual microstate of a system?

IV. ENTROPY AND INFORMATION

A comparison of Eqs.~1! and~6! reveal that the Shannon
information and the Gibbs entropy are formally the same
except for a constant factork5kB / log2 e59.57310224

J/K21 bit21. How should we interpret this coincidence?
Brillouin and Jaynes developed the point of view that en-

tropy is a measure of our lack of information about the mi-
crostate of a system. Probabilities must be assigned to mi-
crostates because we do not know what microstate the
system is in. The missing information is the information that
would be gained if a complete measurement is made on the
system so that the exact microstate is known. The informa-
tion gained in this way is, on average, the Shannon informa-
tion or, up to a constant, the Gibbs entropy. The correct
assignment of probabilities should be made in such a way
that no unjustified assumptions about the system are built
into the probabilities. Probabilities are assigned by building
in what is known about the system and then maximizing the
missing information. This prescription for assigning prob-
abilities is useful in various applications of statistics and has
become known as the maximum entropy principle. As ap-
plied to statistical mechanics, it yields the microcanonical or
canonical ensembles. For example, if the Gibbs entropy is
maximized holding the average energy fixed, the resulting
distribution is the canonical ensemble.

The thesis that entropy is missing information is unsatis-
factory because it makes entropy a subjective rather than an
objective property of physical systems. I favor a viewpoint
espoused by Bennett and Zurek that makes entropy an objec-
tive property of physical systems. Suppose that a complete
description of the microstates of a system has an algorithmic
information contentK(s). Define the algorithmic entropy of
microstate s as kK(s). Equation ~2! insures that the

ensemble-averaged algorithmic entropy will be the same as
the Gibbs entropy and thus a faithful representation of the
thermodynamic entropy.

The algorithmic entropy is now taken as the fundamental
theoretical definition of entropy. For calculations we will still
use ensemble methods but now with algorithmic entropy as a
foundation. Because we have no information about a system
other than a few thermodynamic variables, we choose a
probability distribution according to the maximum entropy
principle. Given these probabilities we calculate averages of
physical quantities. The average entropy, defined in Eq.~3!,
is evaluated using Eq.~2!. This way of thinking puts entropy
on nearly the same footing as other extensive quantities such
as energy. The entropy has a definite~though uncomputable!
value for a physical system but, because of our lack of in-
formation, we actually calculate an average value over an
ensemble. Because statistical mechanics ensembles for mac-
roscopic systems are very sharply peaked, the average is a
very accurate estimate of the actual value.

To illustrate these ideas, consider the entropy of an ideal
monatomic quantum gas obeying Maxwell–Boltzmann sta-
tistics. The gas consists ofN atoms of massm in a box of
volumeV. The microstates are defined by the occupancies of
single particle quantum levels in the box. The Sakur–Tetrode
formula for the entropy is

S5kBN lnFV

N S mkBT

2p\2D 3/2G1
5

2
kBN. ~8!

For 1 mole of4He at 300 K confined to one liter, the entropy
is about 100 J/K. The interpretation of this result is that a
complete description of a single microstate would, on aver-
age, requireS/k5100/9.57310224'1025 bits, or about 17
bits per atom. Note that the natural microscopic unit for en-
tropy is the bit. The Sakur–Tetrode formula is usually de-
rived from the Gibbs entropy but can also be derived directly
from the algorithmic entropy.10

The algorithmic view is useful in clarifying situations
where some of the degrees of freedom of a physical system
are ‘‘information bearing.’’ As a specific example, consider
the analysis of a 1-gigabyte hard disk drive. The heart of this
device is a metal disk coated with a film of magnetic mate-
rial. Like any macroscopic object, this disk has a huge num-
ber of degrees of freedom. Of these degrees of freedom, a
tiny fraction, roughly 83109 ~corresponding to 1 gigabyte!,
are information-bearing degrees of freedom which can be
read or modified. The information-bearing degrees of free-
dom are collective variables, referring to the magnetization
of many electrons in a specific region on the disk. Reading
~writing! is done by a head that rides over the surface of the
disk measuring ~changing! the magnetization. The
information-bearing degrees of freedom contribute to the al-
gorithmic entropy in exactly the same way as all the other
degrees of freedom.

Suppose that the hard drive is initially filled with a record
which is the result of 8 billion coin tosses. The entropy as-
sociated with the information-bearing degrees of freedom
will be k(83109) bits. Suppose that the disk is erased,
meaning that the disk is restored to some simple state with
very little algorithmic information. We conclude that the en-
tropy of the drive has decreased. To satisfy the second law,
an equal or greater increase in entropy must have occurred
elsewhere. If the process occurs near equilibrium at tempera-
ture T, then according to Eq.~4! a tiny amount of heat
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k(83109 bits)(300 K!52.3310211J must be released. This
release of heat requires an expenditure of the same amount of
free energy. In practice, much more free energy than this
amount is dissipated when information on a hard drive is
erased because many other dissipative processes occur. How-
ever, as a matter of principle, the analysis shows very gen-
erally that there is a minimum dissipation ofkT whenever a
bit of information is erased in an environment at temperature
T. This result is known asLandauer’s principle.16,17 Other
aspects of information processing can, at least in principle,
be carried out reversibly. Reading, copying, and computing
can all be carried out without dissipation,9 although in prac-
tice, each of these processes dissipates much more thankT
per elementary step.

Having made the argument that information and entropy
are fundamentally equivalent, it is useful to distinguish be-
tween degrees of freedom that are under our control and
easily measured and degrees of freedom that are not under
our control and not easily measured. Although this distinc-
tion is fuzzy and changes as technology advances, it is none-
theless useful to associate the term information with the con-
trolled degrees of freedom and the term entropy with
uncontrolled degrees of freedom. Erasing information is a
process in which information/entropy is moved from con-
trolled to uncontrolled degrees of freedom. Thus, by defini-
tion, erasure is an irreversible process.

The algorithmic approach to entropy does not resolve the
fundamental questions surrounding the second law and the
arrow of time. Algorithmic entropy/information is essentially
conserved by classical or quantum dynamics because of
time-reversal invariance. Small perturbations from outside
the system or other sources of decoherence are required to
explain the increase in information/entropy during the equili-
bration of an isolated system.

V. SUMMARY

We have seen that the notions of entropy, information, and
randomness are equivalent and can be defined for individual
microstates of physical systems using the ideas of algorith-
mic information theory. Algorithmic information content is
the number of bits required to store a record in the most
compressed possible form. The algorithmic definition of en-
tropy is equivalent to the Gibbs ensemble definition. The
ensemble approach is required for most calculations but the
algorithmic viewpoint has some conceptual advantages. The
algorithmic approach gives entropy an objective meaning,
and it clarifies the analysis of systems with information han-
dling abilities. Landauer’s principle applies to such systems
and states thatkT free energy must be dissipated when one
bit of information is erased in an environment at temperature
T.
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