1 Wireless Systems and Channels

1.1 Wireless Systems

- 3G, WiFi, WiMAX, UWB, Bluetooth, Zigbee, etc...
- Data rate: 10kbps 1Gbps
- Coverage: WPAN, WLAN, WMAN
- Applications: when, where, how?
- Spectrum: licensed, unlicensed
- Key technologies

1.2 Multipath Channels

- Channel disturbance can be a combination of additive noise, multiplicative fading and distortion due to time dispersion
- Scattering by randomly located scatters give rise to different paths with different path lengths
- Time dispersion causes intersymbol interference (ISI)
- Frequency dispersion introduces new frequency components other than those existing in the input signal
- Channel equalization techniques can be used to combat ISI

1.3 Channel Fading

- Fading: fluctuations in amplitude of received signals
- cause: multipath reflections:

$$r(t) = b_1(t)s(t) + b_2(t)s(t - \tau_d)$$

• types: time-dispersive (frequency selective) and frequencydispersive (time selective)

1.4 Channel Impulse Response

Let c(t) denote the impulse response (i.e., the channel output when the channel input is an impulse applied at time t = 0, $\delta(t)$.

For linear time-invariant (LTI) channel, the channel response to an input applied at time t_1 , $\delta(t - t_1)$ is $c(t - t_1)$. In general, the channel output r(t) is given by

$$r(t) = c(t) * s(t) = \int_{-\infty}^{\infty} s(t-\tau)c(\tau)d\tau$$

Electrical Engineering

1.5 LTV channels

Most wireless channels are linear time-varying (LTV). Let $c_1(t)$ and $c_2(t)$ denote the channel response to the input $\delta(t)$ and $\delta(t - t_1)$. As the channel propagation environment changes over time, $c_2(t)$ is not simply $c_1(t)$ delayed by t_1 (i.e., $c_2(t) \neq c_1(t - t_1)$)

A LTV channel response can be described as $c(t, \tau)$, which is the channel output at t in response to an impulse applied to the channel at $t - \tau$.

In $c(t, \tau)$, τ represents the propagation delay, and

$$r(t) = c(t,\tau) * s(t) = \int_{-\infty}^{\infty} s(t-\tau)c(t,\tau)d\tau$$

1.6 A two-path channel (Page 239)

The channel impulse response for a channel with 2 distinct scatters is

$$r(t) = b_1(t)s(t) + b_2(t)s(t - \tau_d)$$

Accordingly, the impulse response may be expressed as

$$c(t,\tau) = b_1(t)\delta(t) + b_2(t)\delta(t-\tau_d)$$

where $b_1(t)$ and $b_2(t)$ are random processes that represent the time-varying propagation behavior of the two multipath components

- A multipath channel is *time dispersive* if the multipath delays are distinct
- The frequency response of a time dispersive channel will exhibit amplitude fluctuation
- ISI = time dispersive = frequency selective

1.7 Mathematical models

 $b_1(t)$ and $b_2(t)$ can be generated by passing white Gaussian noise through lowpass filters.

The bandwidth of the filters decides the *coherent time* of the channel. When the bandwidth is wide (narrow), the channel experiences fast (slow) variation and a short (long) coherent time.

A simple two-pole IIR filter can used our simulations

$$H(z) = \frac{(1-p)^2}{(1-pz^{-1})^2}$$

When p is close to the unit circle, the filter bandwidth is narrow, whereas when p is close to zero. The bandwidth is wide.

