

Software Defined Radio on Digital Communications:
a New Teaching Tool

André L. G. Reis*, André F. B. Selva*, Karlo G. Lenzi†, Sílvio E. Barbin‡ and Luís G. P. Meloni*
*FEEC – School of Electrical and Computer Engineering

UNICAMP – State University of Campinas
Campinas, SP – Brazil

†DRC – Convergent Networks Department
CPqD – Research and Development Center

Campinas, SP - Brazil
‡EPUSP – Polytechnic School
USP – University of São Paulo

São Paulo, SP - Brazil.
e-mail: andre.lgr@gmail.com, andrefselva@gmail.com, klenzi@cpqd.com.br, barbin@usp.br and meloni@decom.fee.unicamp.br

Abstract—In this paper we present a Software Defined Radio
(SDR) platform, composed by a USRP hardware and GNU Radio,
as a new approach for teaching telecommunications at schools of
Electrical Engineering. The proposed approach makes the
preparation of an experiment faster by using modern
communications architectures, which significantly reduce the
occurrence of errors during the setup of test beds as well. This
gives the students the opportunity to focus their efforts on the
learning of communications techniques and algorithms.
Furthermore, we intend to make easier the verification and
validation processes of implemented models, supported by the use
of specialized tools.

Keywords: GNU Radio; Telecommunications Laboratory;
USRP; Digital Signal Processing; Software Defined Radio

I. INTRODUCTION
Nowadays, telecommunications fundamentals are presented

through analog platforms i.e. circuits with analog components
in undergraduate laboratories. In general, the students are
responsible for assembling circuits that implement certain
communication techniques, and using several equipments to
stimulate and evaluate the performance of those circuits, such
as function generators, oscilloscopes, spectrum analyzers,
among others. They are asked to report back the results and
draw conclusions about the experiment success or difficulties.
All these tasks, performed in a short time interval, limit the
experiment complexity.

Failures related to assembly mistakes, use of defective
components and inappropriate use of equipments may
compromise the entire experiment, delay its implementation
and, thereby making the learning process more difficult, since
students have to spent some time solving these problems,
instead of using time effectively to understand the concepts
involved in the experiment.

A similar example is the case of Logic Circuits Laboratory
[1] classes. A few years ago, this discipline was taught through

the use of protoboards and several logic gates ICs. Students,
after a short explanation about the experiment, would spent
much time cutting and connecting copper wires from one logic
gate to another in order to implement their projects. However,
due to advances in technology, with the advent of
programmable logic devices and emphasis on design
specification through hardware description languages, the use
of protoboards and ICs became outdated and was gradually
removed from courses agenda. Nowadays, Logic Circuits
laboratories use development kits with programmable
hardware, such as FPGAs (Field-Programmable Gate Array)
and CPLDs (Complex Programmable Logic Devices), from
manufacturers, such as Altera and Xilinx, along with its
development environments (e.g. Quartus II – Altera [2]).
Students no longer waste their time creating a lot of wire
connections that make the project more susceptible to human
failure and also impair modifications and the inspection of
certain parts of the circuit. By transferring to synthesis tools the
task of routing and connecting those logic elements, it is
possible to increase the circuit reliability and the experiment’s
complexity [3]. This brought more depth and quality to
teaching making those devices essential to these courses.

In this paper, we propose to change the current way that
telecommunications laboratory classes are taught at universities
in general, traditionally done through hardware-only platforms.
Our approach is primarily focused on software, supported by a
new communication model called Software Defined Radio or
SDR, and allows the students to focus their efforts on more
relevant aspects of the class like telecommunication systems
design, supported by the theory available in the literature,
reducing the challenges of assembling and validating the
experiment dramatically.

II. THE SOFTWARE DEFINED RADIO
The main idea of an SDR is to transfer tasks performed by

hardware to software. System characteristics such as signal
modulation scheme, operation frequencies, bandwidth, and

This work is supported by FINEP – Financiadora de Estudos e Projetos -
Brazil, contract no. 01.07.0110.00, “Avaliação do Middleware Ginga”.

others, are no longer dependent on analog circuits, which in
general are pre-defined in a conventional radio equipment. In
an SDR they rely on a system that integrates a programmable
hardware and software that offers flexibility to modify those
characteristics. Thus, this kind of radio can behave in different
ways, making it possible to perform changes in the system
features by software, simply changing the parameters
responsible the definition of its behavior, even in runtime.
Furthermore, it is possible to have a completely different
communication system just by replacing the software that is
executed, keeping the same hardware. For instance, with the
same platform one can evolve from an FM Receiver [4] to a
complex Digital TV transmitter [5]. This is possible by means
of the evolution of programmable devices such as DSPs
(Digital Signal Processors) and FPGAs which made this
architecture flexible enough to adapt to different applications
without the need of modifying the hardware structure itself.

SDR Platforms are already widely used in scientific field.
Its versatility allows several researches in telecommunications
to be conducted in very elegant ways as, for example, in
cognitive radios [6], OFDM (Orthogonal Frequency Division
Multiplexing) modulation [7], GSM base stations [8], etc. Since
one can deploy different radios with the same hardware, SDR
shows itself as an interesting solution to be used in
telecommunications laboratories because it can significantly
simplify the execution of experiments and allow a wide variety
of systems to be implemented and tested just by modifying an
algorithm developed in software. Many devices, like diodes,
capacitors, etc., or even equipments can be replaced by a single
hardware platform. This does not mean that learning how to use
such components and equipments is not important.

From this, two advantages arise: 1) students can dedicate
more time to understand the concepts involved in the
elaboration and the design of communication systems and 2)
they will spent less time setting-up the test bed. Also, this
approach reduces the budget necessary to prepare a
telecommunications laboratory, since it can be composed just
by a PC and an appropriate SDR board for each student group.

There are in the market several solutions for implementing
an SDR system. In this paper, we will present the solution
proposed in [9], the USRP (Universal Software Radio
Peripheral), which is commercially available. Fig. 1,
reproduced from [10], shows a scheme of an SDR that uses
USRP.

Composed by a motherboard and configured by many
daughter boards, the USRP abstract the system RF front-end.
The motherboard performs, in general, the base-band to
intermediate frequency processing and vice-versa, while
daughterboards perform up-conversion/down-conversion of
frequency and transmission/reception of signal.

USRP communicates to PC through a Gigabit Ethernet
interface (as in Ettus N210 [11]) or USB, in earlier models.
This allows the personal computer to receive and store data in
order to process the digital signals within it in specialized
software environments as Matlab or GNU Radio.

Figure 1. SDR with USRP and GNU Radio [10].

III. GNU RADIO
GNU Radio [12] is an open-source toolkit that provides

tools for development and simulation of SDR systems. It is
used to design and execute algorithms that define a desired
communication system.

There are basically three ways to use GNU Radio. In a
high-level perspective, we can use GNU Radio Companion
(GRC), which is a graphical tool where we can build an SDR
system by connecting signal processing blocks, establishing a
processing chain or flow, from signal input to system output.
In an intermediate-level, we can use the programming
language Python as a way to describe the block connections or
in its lowest level, we can modify and even create new
processing blocks using C++, chosen due to performance
issues, and use these blocks in the higher levels (Python or
GRC).

In this paper, we will focus our attention to GNU Radio
Companion due to its friendly interface and ease of use. Fig. 2
shows the interface of this environment.

In the right side bar of GRC we find several types of blocks
and tools that can be used to build a system. There are signal
generators, operators, graphical sinks, filters, among others.
There are also blocks responsible to communicate with USRP
hardware. The N210 board by ETTUS [11] uses UHD
(Universal Hardware Driver) Sink and UHD Source. These
drivers allow an application on PC running in GNU Radio to
send and receive signals to/from the board. Fig. 3 and Fig. 4
show UHD Sink block and its parameters screen, respectively.

Figure 3. UHD Sink block.

Figure 4. UHD Sink parameters.

The development process consists, basically, in setting-up
and connecting blocks in a certain way so that the sequence of
connection defines a processing flow. The output of last stage
should provide the desired signal.

The possibility to set-up the block parameters gives high
flexibility to this kind of development. We can focus our efforts
on algorithm, and not on the hardware that will perform it.
Thus, we can change, for instance, the input or output signal
central frequency through a slider in runtime, modify
modulation characteristics, among others. These benefits would
not be easily achieved in a regular test-bed for
telecommunications laboratory.

Each block deals with a certain data type on its interfaces
(e.g. float, complex, etc), which in many cases is configurable
through the parameters Input Type or Output Type. If the block
does not offer support to modify the data type, it still can be
done by type-casting blocks offered by GRC. In order to
distinguish such types, GRC uses a color code on the interface
of blocks. Table I shows a partial list of the relation between
color and data type. The full list can be found in menu
Help/Types of GRC.

TABLE I. RELATIONSHIP BETWEEN CONNECTOR COLOR AND DATA TYPE.

Connector Color Data Type

Blue Complex

Orange Float

Yellow Short

Magenta Byte

Green Integer

GRC still has a terminal that shows status messages about
the system, in runtime. Hardware communication problems,
wrong parameter value, etc., are examples of status messages
that can be shown in this terminal.

IV. CURRENT SCENARIO ON TEACHING
TELECOMMUNICATIONS FUNDAMENTALS

Nowadays, telecommunications laboratory is taught
through the use of analog components in the experiments. In
Reference [13] we can find the experiment guides used in
discipline Communications Laboratory I, taught in School of
Electrical and Computer Engineering (FEEC) at State
University of Campinas (UNICAMP). In this discipline,
students practice many communications concepts learned in
theory such as AM and FM modulation and demodulation,
frequency spectrum of signals, etc, using analog circuits and
equipments like signal generators, spectrum analyzers and
oscilloscopes.

The high cost of equipments traditionally used to execute a
telecommunications laboratory might be prohibitive to
universities that have low budget. By using software defined
radio platforms, it would be possible to reduce the cost of
those laboratories so it could be more accessible to such
universities. A telecommunications laboratory could be
executed just using personal computers and SDR boards. An
Ettus N210 board [11] along with daughter boards BasicTX
and BasicRX [14], for instance, cost less than two thousand
dollars [9]. There are other SDR boards that cost even less
[15]. Just the cost of a signal vector generator overcomes this
value. All these equipments could be replaced by the tools
included in GNU Radio.

By replacing those components and equipments by a PC-
based platform, it would also be possible to reduce errors
during experiments, increase its complexity, reduce assembly
time and give to the student more focus on algorithms and
communications techniques. In other words, the same benefits
achieved in Logic Circuits laboratories by migrating from
protoboards to development kits with FPGAs could be also
achieved here by correct use of SDR platforms.

Another point is that model simulation and verification in
PC presents several advantages since it is easy to modify
parameters of the model or even the model as a whole and test
its output before doing any physical implementation.
Furthermore, mathematical toolboxes, as Matlab or Octave,
can be used to help processing these data.

V. AN EXAMPLE OF EXPERIMENT USING SOFTWARE
DEFINED RADIO

In [16] we find a guide to an experiment executed in
Communications Laboratory I discipline at UNICAMP. This
experiment consists in practical study of amplitude
modulation.

In this section we will present an alternative
implementation of some topics of this experiment using GNU
Radio Companion in order to establish a comparison between
the traditional approach and the one proposed here.

An amplitude-modulated wave is described by (1),
according to [16].

xc(t) = [1 + mx(t)]Accos(2πfct) (1)

The parameters of (1) are described in Table II.

TABLE II. AM MODULATION PARAMETERS.

Parameter Description

Accos(2πfct) Non-modulated carrier

Ac Constant

m Modulation Index

x(t) Message

fc Carrier frequency

We can describe (1) as a blocks diagram using GRC. Fig. 5
shows this description.

To generate the carrier and the “message”, we used two
“Signal Source” blocks, configured to meet the experiment
requirements. The operations performed with these signals are
represented by the blocks “Add” and “Multiply”. Parameters of
the system are stored using “Variable” blocks. The equivalents
to oscilloscope and spectrum analyzer are the “WX GUI Scope
Sink” and “WX GUI FFT Sink” blocks, respectively, which
produce graphical outputs of the processed signal. It is worth
emphasizing that it is necessary to use a “Throttle” block,
otherwise, in case of simulation without audio or USRP blocks,
the GUI elements will be locked, given that GRC will consume
all CPU available [17].

The parameters of (1) used in the system presented in Fig. 5
from first section of practical tasks of [16] are presented in
Table III. It was used a scale adjustment of 10³ for convenience.

TABLE III. AM MODULATION PARAMETERS FOR THE EXPERIMENT.

Parameter Value

Accos(2πfct) cos(2π10³t)

Ac 1

m 50%

fc 1 kHz

For a “message” described by

x(t) = sin(2π20t), (2)

one obtains the following outputs from Scope Plot (equivalent
to oscilloscope) and from FFT Plot (equivalent to spectrum
analyzer), showed by Fig. 6 and Fig. 7, respectively.

Figure 6. Scope Plot – Amplitude-modulated sine wave.

Figure 7. FFT Plot – Frequency spectrum of the amplitude-modulated sine
wave.

Our goal now is to calculate the modulation index m
through the graphics we obtained by simulating the system.
There are two ways to obtain such index.

First, we can use the temporal output of the system and
obtain m through

m = (Amax - Amin)/ (Amax + Amin), (3)

where Amax and Amin are maximum and minimum modulated-
wave’s amplitude, respectively, according to [16].

Through the system frequency spectrum, analyzing Fig. 8
[16], we can obtain a relation to calculate m, presented by (4).

Figure 8. Frequency spectrum of a Tonal Modulation[16].

 m = 2(amplitude in fc-fm)/(amplitude in fc) (4)

From Fig. 6, the modulated wave has a maximum amplitude
value of approximately 1.48 and minimum amplitude of 0.49.
Then, modulation index value is, using (3)

m = (1.48-0.49)/(1.48+0.49) = 0.50. (5)

Now using Fig. 7 referent to frequency spectrum, the
amplitude in fc-fm is approximately -19 dB, in other words, 0.11.
The amplitude in fc is approximately -7.2 dB, that is, 0.44.
Thus, using (4), modulation index is

 m = 2(0.11)/0.44 = 0.50. (6)

As expected by configuration showed in Table III, the
modulation index measured by (5) and (6) is approximately
50%.

Changing the message to a triangular wave, as required by
this laboratory guide [16], we obtain the following graphics,
presented in Fig. 9 and Fig. 10.

Figure 9. Scope Plot – Amplitude-modulated triangular wave.

Figure 10. FFT Plot – Frequency spectrum of amplitude-modulated
triangular wave.

To conclude the equivalence demonstration of this
experiment in GRC, using a Gaussian noise with amplitude 0.5
and seed 42 as “message”, we obtain the graphics showed in
Fig. 11 and Fig. 12.

Figure 11. Scope Plot – Amplitude-modulated noise.

Figure 12. FFT Plot – Frequency spectrum of amplitude-modulated noise.

VI. DISCUSSIONS
In the traditional execution of the experiment presented in

Section V, we use the function generator, oscilloscope and
spectrum analyzer. Also, for the experiment as a whole, we use
an analog AM Modulator build in board, showed in Fig. 13
[16].

The functioning of all these devices can be replaced by
GNU Radio Companion, as we showed. Even though we have
not executed the part of experiment that uses the board
presented in Fig. 13, this could also be replaced by the
schematic showed in Fig. 5, since both implementations
perform AM Modulation of a message, one by means of
analog circuits and other by means of mathematical model
implemented via software, respectively.

With respect to experiment execution time, the initial effort
on using GRC is to describe the mathematical expression in
terms of signal processing blocks. Then, changing parameters
is trivial. Once the model is done, it is possible to verify its
behavior in any point by using the graphical analysis tools
available at GRC, what makes the process much more efficient

when compared to other verification methods available in
hardware, as multimeters and oscilloscopes test probes. It is
also possible to load or store data into files for stimuli or for
future processing in specialized mathematical tools.

It is also possible to state that GRC implementation is more
flexible than circuit based case. In this case, the carrier
frequency is fixed in 1 MHz in the circuit because of the LC
(Inductor-Capacitor) circuit used, as we can see in Fig. 13. By
other hand, it is possible to change this frequency in GRC just
by modifying a single variable, which is described in Table II.

By using the USRP hardware (e.g. N210 [11]) we can send
the modulated signal through the air with UHD Sink block,
previously showed by Fig. 3. We can also use the PC sound
card to generate a message (voice signal), received from
microphone by the block Audio Source available at GRC. In
short, there are several ways to improve the experiment
through the use of the features offered by SDR platforms.

Another relevant aspect is that the accuracy of the results
obtained in this experiment is higher than the traditional
model, because the latter relies on circuits designed with low
precision and quality components, while the former is a
consolidated commercial solution. Still, the instruments used
to measure the variables have limited accuracy and are based
on instant measures, while the solution SDR with GNU Radio
can establish its measures based on statistics of the received
signal, built by a collection of signal samples.

Finally, due to its flexibility in modifying parameter of the
system, it is possible to reduce the incidence of experiment
report plagiarism. To do so, we just need to define some
characteristic of the system based on some sort of combination
of SRN (Student Registration Number) digits of the group
members. In other words, each report will have unique data and
graphics, as long as we choose an appropriate combination
expression of the digits.

VII. CONCLUSION
In this paper we presented a software defined radio

platform, composed by a USRP [9] and GNU Radio [12], with
the goal of replacing current devices used in conventional
telecommunications laboratories. It was shown that we can
reduce the time spent in the experiments by replacing the
traditional way they are executed, with analog components as
diodes and capacitors, to a PC-based platform. This allows the
students to dedicate themselves on what really matters, namely
the communications techniques and algorithms.

This proposal makes the teaching process more dynamic
and efficient as well as it is capable of reducing the costs
necessary to prepare a laboratory of communications class at a
university. These advantages, along with the need to follow
technological advances of communication systems, make this
proposal a feasible and interesting solution to improve
telecommunications teaching.

REFERENCES

[1] W. S. Ting, “EA773: Laboratório de Circuitos Lógicos”. [Online].
Available:
http://www.dca.fee.unicamp.br/courses/EA773/1s2011/index.html

[2] Altera, “Quartus II Web Edition Software”. [Online]. Available:
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-
index.html

[3] W. S. Ting, “EA773 Laboratório de Circuitos Lógicos - Experiência 5:
calculadora com memória”. [Online]. Available:
http://www.dca.fee.unicamp.br/courses/EA773/1s2011/roteiros/rot_5.pdf

[4] M. Fähnle, “Software-Defined Radio with GNU Radio and USRP/2
hardware frontend: setup and FM/GSM applications”, Hochschule Ulm
University of Applied Sciences, 2010.

[5] V. Pellegrini, G. Bacci and M. Luise, "Soft-DVB, a fully software,
GNURadio based ETSI DVB-T modulator", in Proc. WSR'08, Karlsruhe,
Germany, March 2008.

[6] Z. Yan, Z. Ma, H. Cao, G. Li, and W. Wang, “Spectrum sensing, access
and coexistence testbed for cognitive radio using USRP”, 4th IEEE
International Conference on Circuits and Systems for Communications,
2008. ICCSC 2008, 26-28 May 2008.

[7] A. Marwanto, M. A. Sarijari, N. Fisal, S. K. S. Yusof and R. A. Rashid,
"Experimental study of OFDM implementation utilizing GNU Radio and
USRP - SDR," Communications (MICC), 2009 IEEE 9th Malaysia
International Conference, 15-17 Dec. 2009.

[8] E. Natalizio, V. Loscrí and, G. Aloi, N. Paolí and N. Barbaro, “The
practical experience of implementing a GSM BTS through open
software/hardware,” in Applied Sciences in Biomedical and
Communication Technologies (ISABEL), 2010 3rd International
Symposium, Nov. 2010.

[9] M. Ettus, “Universal Software Radio Peripheral”. [Online]. Available:
http://www.ettus.com.

[10] L. K. Patton, “A GNU Radio based software-defined radar”, Wright
State University, 2007, p. 10.

[11] M. Ettus, “USRP N200 Series”. [Online]. Available:
http://www.ettus.com/downloads/ettus_ds_usrp_n200series_v3.pdf

[12] GNU Radio. [Online]. Available: http://gnuradio.org
[13] G. Fraidenraich, “EE882 - Laboratório de Comunicações I”. [Online].

Available: http://www.decom.fee.unicamp.br/~gf/Decom/EE882.html
[14] M. Ettus, “TX and RX Daughterboards”. [Online]. Available:

http://www.ettus.com/downloads/ettus_daughterboards.pdf
[15] FlexRadio Systems, “FLEX-1500 Transceiver”. [Online]. Available:

http://cart.flexradio.com/FLEX-1500_p_10.html
[16] M. D. Yacoub, “Unicamp - EE882 - Laboratório de Comunicação I -

Experiência 3: modulação em amplitude”. [Online]. Available:
http://www.decom.fee.unicamp.br/~gf/Decom/EE882_files/EE882-
exp3.pdf

[17] GNU Radio, “GNU Radio Companion - usage tips”. [Online].
Available:
http://gnuradio.org/redmine/projects/gnuradio/wiki/GNURadioCompanio
n#Usage-Tips

Figure 2. GNU Radio Companion interface.

Figure 5. Blocks diagram of AM Modulator.

Figure 13. AM Modulator board [16].

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

