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Recall Simple Digital Transceiver Model

I Receiver only observes the corrupted version of s(t) by n(t),
namely r(t)

I Usually n(t) represents the culmination of all noise sources
into a single variable

I Detection problem: Given r(t) for 0 ≤ t ≤ T , determine
which si (t), i = 1, 2, . . . ,M, is present in r(t)

Transmitting 
Device
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Figure : Simple Digital Transceiver Model.

Copyright c© 2013, Di Pu and Alexander M. Wyglinski Digital Communication Systems Engineering with SDR



Optimal Detection
Signal Vector Framework
Probability Density Function of n
Decision Rules

Mathematical Formulation

I Decompose waveforms si (t), n(t), and r(t) into a collection
of weights applied to a set of orthonormal basis functions:

si (t) =
N∑

k=1

sikφk(t), r(t) =
N∑

k=1

rkφk(t), n(t) =
N∑

k=1

nkφk(t)

I Thus, waveform model r(t) = si (t) + n(t) now becomes

r(t) = si (t) + n(t)

N∑
k=1

rkφk(t) =
N∑

k=1

sikφk(t) +
N∑

k=1

nkφk(t)

r = si + n→ Vector Model
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n(t) is Gaussian

I We know that the noise vector element nk is equal to:

nk =

T∫
0

n(t)φk(t)dt (1)

I Since n(t) is Gaussian and integration is a linear operation,
then nk is Gaussian as well

I n is a Gaussian vector

I We need to determine the statistical characteristics of n in
order to employ this knowledge in signal waveform detection
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Calculating the Mean

I Applying the definition for the expectation:

E{nk} = E


T∫
0

n(t)φk(t)dt


=

T∫
0

E{n(t)}φk(t)dt

= 0 since E{n(t)} = 0

∴ E{n} = 0
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Calculating the Variance

I Let (nnT )kl = nknl be equal to the (k , l)th element of nnT

I Determine E{nknl}, where:

nk =

T∫
0

n(t)φk(t)dt, nl =

T∫
0

n(ρ)φl(ρ)dρ

I Applying the definition for E{nknl} yields:

E{nknl} = E


 T∫

0

n(t)φk(t)dt

 T∫
0

n(ρ)φl(ρ)dρ


= E


T∫
0

T∫
0

n(t)n(ρ)φk(t)φl(t)dtdρ


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Solving E{nknl}

E{nknl} =

T∫
0

T∫
0

E{n(t)n(ρ)}φk(t)φl(t)dtdρ

=

T∫
0

T∫
0

N0

2
δ(t − ρ)φk(t)φl(t)dtdρ→ AWGN channel

=
N0

2

T∫
0

φk(t)φl(t)dt

=
N0

2
δ(k − l)→ orthonormal functions φk(t) and φl(t)

∴ the matrix equivalent is E{nnT} =
N0

2
IN×N
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Noise Properties

I Only for Gaussian random variables does uncorrelated implies
independence

I By central limit theorem, if we sum up the outputs of several
random variables possessing the same probability
characteristics, they will yield a Gaussian distribution

I n(t) is usually composed of many individual sources
I Superposition of these sources will yield a Gaussian distribution
I Modeling n(t) closely matches communication channel noise in

several scenarios
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Defining the Probability Density Function

I Given a vector of Gaussian random variables, we define the
joint probability density function as:

p(n) = p(n1, n2, . . . , nN) =
1

(2πσ2)N/2

N∏
i=1

e−n
2
i /2σ

2

= p(n1)p(n2) . . . p(nN)

where p(ni ) = 1
σ
√
2π
e−n

2
i /2σ

2

I Since E{nknl} = N0
2 δ(k − l), then E{n2k} = N0

2 = σ2

I Defining
N∑
i=1

n2i = ||n||2 yields the following expression:

p(n) = p(n1, n2, . . . , nN) =
1

(2πσ2)N/2
e−||n||

2/2σ2

Copyright c© 2013, Di Pu and Alexander M. Wyglinski Digital Communication Systems Engineering with SDR



Optimal Detection
Signal Vector Framework
Probability Density Function of n
Decision Rules

Probability of Correct Detection

I Our criterion for the receiver is:

Minimize P(error)→ P(m̂i 6= mi )

Maximize P(correct)→ P(m̂i = mi )
(2)

where P(e) = P(error), P(c) = P(correct), and
P(e) = 1− P(c)

I The overall probability of correct detection is equal to:

P(c) =

∫
V

P(c|r = ρ)p(ρ)dρ (3)

where P(c |r = ρ) ≥ 0 and p(ρ) ≥ 0
I Therefore P(c) is maximum when P(c |r = ρ) is maximum
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Decision Rule Formulation

I To maximize P(c |r = ρ), we use the decision rule:

P(sk |ρ) ≥ P(si |ρ), for i = 1, 2, . . . ,M and i 6= k (4)

for i = 1, 2, . . . ,M and i 6= k

I Declare sk as present in ρ:

ρ = sk + n→ m̂ = mk (5)

I Employ a mixed form of Bayes Rule that is composed of
probability density functions and probabilities, namely:

P(si |r = ρ) =
p(ρ|si )P(si )

p(ρ)
(6)
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Optimal Detector

I Using the mixed form of Bayes Rule, and recalling how we
want to maximize P(c |r = ρ), the optimal detector is equal to:

max
si

P(si |r = ρ) = max
si

p(ρ|si )P(si )

p(ρ)
(7)

for i = 1, 2, . . . ,M

I Since p(ρ) does not depend on si , we can simply the optimal
detector to:

max
si

p(ρ|si )P(si ) (8)

for i = 1, 2, . . . ,M
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MAP and ML Detectors

I A maximum a posteriori (MAP) detector is equal to:

P(si |r = ρ) = max
si

p(ρ|si )P(si ) (9)

for i = 1, 2, . . . ,M

I A maximum likelihood (ML) detector is defined as:

P(si |r = ρ) = max
si

p(ρ|si ) (10)

for i = 1, 2, . . . ,M, and assuming P(si ) = 1
M

I This implies that P(si ) does not depend on si
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