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Extending Single Carrier to Multicarrier

I Multicarrier modulation can be viewed as the simultaneous
transmission of several low data rate single carrier signals
summed together

I These signals, referred to as subcarriers are kept separate in
the frequency domain

I In this lecture, we begin with the development of an
orthogonal quadrature amplitude modulation (OQAM)
multicarrier framework

I Multiple QAM signals modulated to different carrier
frequencies and summed toegther

I We then extend this result in the subsequent lecture to show
it can be implemented using a discrete Fourier transform
(DFT) and its inverse (IDFT)

I This is referred to as orthogonal frequency division
multiplexing (OFDM)
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Rectangular M-ary QAM Revisited

I D bits are taken from the input bit stream d [m]

I Used to select one of 2D combinations of amplitudes for the
two carriers, a[`] and b[`]

I Resulting M-ary QAM signal is equal to:

s[n] = a′[n] cos(ωkn) + b′[n] sin(ωkn) (1)

where
I a′[n] and b′[n] piecewise constant signals
I ωk = 2πk/2N is the carrier frequency
I 2N is the period of the symbol
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Rectangular M-ary QAM Revisited

1.2. Digital Communications Primer 1-2
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Fig. 1.1 Rectangular QAM modulator (multirate model of a digital implementa-
tion).

values. Figure 1.1 represents a discrete-time model of the QAM modulator, where the sequence
of input bits d[m] is used to determine the amplitudes of the two carriers. For each symbol
period, D bits of input are taken from the input bit stream d[m] and used to select one of
the 2D combinations of amplitudes for the two carriers. Calling these amplitudes a[`] and b[`]
respectively, where ` represents the symbol time index, these amplitudes are kept constant for
the duration of a symbol period by the upsampling and rectangular window filtering shown
in Figure 1.1, yielding the piecewise constant signals a′[n] and b′[n]. One can then write the
expression of the modulated signal as

s[n] = a′[n] cos(ωkn) + b′[n] sin(ωkn) (1.1)

where ωk = 2πk/2N is the carrier frequency, and 2N is the period of the symbol. Note that
we have to limit the possible carrier frequencies to integer multiples of 2π/2N in order to keep
orthogonality between the sinusoidal and cosinusoidal carriers in a digital implementation (see
derivations below).

Question 1: Prove that the carriers cos(ωkn) and sin(ωkn) are orthogonal over the symbol
period1 . Are there any values of k that are exceptions? Why?

Matlab Task 1: Implement the QAM modulator as shown in Figure 1.1, given an arbitrary
ωk.

In this project, we will be dealing with rectangular QAM signal constellations, such as those
shown in Figures 1.2(a), 1.2(b), and 1.2(c) for 4-QAM, 16-QAM, and 64-QAM, respectively.
This bascially amounts to saying that a[`], b[`] ∈ {±(2k − 1)E, k = 1, . . . , 2D/2−1}, where E is
some positive constant that scales the energy of the sent signals, and D/2 is the number of bits
used to represent the amplitude level of one of the carriers during a symbol.

One of the advantages of QAM signalling is the fact that demodulation is relatively simple to
perform. From Figure 1.3, the received signal, r[n], is split into two streams and each multiplied
by carriers, cos(ωkn) and sin(ωkn), followed by a summation block (implemented here through
filtering by a rectangular window followed by downsampling). This process produces estimates

1Two real sequences h[n] and g[n] are said to be orthogonal over a period 0 to P if
∑P−1

n=0 h[n]g[n] = 0.

Figure : Rectangular M-ary QAM Transmitter.
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Rectangular M-ary QAM Revisited

1.2. Digital Communications Primer 1-4

d̂[m]

b̂[`]
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Fig. 1.3 Rectangular QAM demodulator.

of the in-phase and quadrature amplitudes, â[l] and b̂[l], namely
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where, due to the orthogonality of the two carriers, the cross terms vanish, leaving the desired
amplitude (after some trigonometric manipulation). The bits etsimated from â[`] and b̂[`] bits
are then multiplexed together, forming the reconstructed version of d[m], d̂[m].

Question 2: Prove that Eqs. (1.2) and (1.3) are true. What are the exceptions for the carrier
frequencies for perfect recovery? Why is k constrained to be below N?

Matlab Task 2: Implement the rectangular QAM demodulator as shown in Figure 1.3, given
an arbitrary ωk. Test the cascade of the QAM modulator and demodulator to see if the

Figure : Rectangular M-ary QAM Receiver.
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Sample M-ary QAM Signal Constellations
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Figure : Rectangular 16-QAM Signal
Constellation with Gray Coding.
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Figure : Rectangular 64-QAM Signal
Constellation with Gray Coding.
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Rectangular M-ary QAM Demodulation
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Rectangular M-ary QAM Demodulation
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Orthogonally Multiplexed Quadrature Amplitude
Modulation

1.3. The OFDM Principle 1-8
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Fig. 1.7 Transmitter of an orthogonally multiplexed QAM system
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Equivalence Between OQAM and OFDM

I Orthogonal frequency division multiplexing (OFDM) is an
efficient type of multicarrier modulation

I Employs discrete Fourier transform (DFT) and inverse DFT
(IDFT) to modulate and demodulate data streams

I Carriers used in OQAM transmission are sinusoidal function of
2πkn/2N

I A 2N-point DFT or IDFT can carry out the same modulation
I It contains also summations of terms of the form e±2πkn/2N
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