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Choice of Analysis and Synthesis Filters

I We have just seen the general form for multicarrier
modulation, which consists of multiplexing and demultiplexing
data as well as employ synthesis and analysis filter banks

I Different multicarrier implementations are mainly based on the
choice of filters for the signal analysis and synthesis stages

I Each of the N subchannels consist of bandwidth ∆f = W /N,
where W is the total transmission bandwidth

I Division of data into independent subchannels yields an
opportunity for a “divide-and-conquer” approach to data
transmission

I Question: Can we implement multicarrier modulation
efficiently?
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OFDM Framework

I High-speed digital input, d [m], is demultiplexed into N
subcarriers using a commutator

I Data on each subcarrier is then modulated into an M-QAM
symbol

I For subcarrier k , we will rearrange ak [`] and bk [`] into real and
imaginary components yielding pk [`] = ak [`] + jbk [`]

I In order for the output of the IDFT block to be real, given N
subcarriers, we must use a 2N-point IDFT

I Terminals k = 0 and k = N are “don’t care” inputs
I For subcarriers 1 ≤ k ≤ N − 1, the inputs are

pk [`] = ak [`] + jbk [`]
I For subcarriers N + 1 ≤ k ≤ 2N − 1, the inputs are

pk [`] = a2N−k [`] + jb2N−k [`]
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Figure : Orthogonal Frequency Division Multiplexing Transceiver.
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OFDM Spectra
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Figure : Frequency Response of OFDM Transmission Consisting of
Superimposed Sinc Spectra.
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OFDM Modulation and Demodulation

I The IDFT is then performed, yielding:

s[2`N + n] =
1

2N

2N−1∑
k=0

pk [`]e j(2πnk/2N) (1)

where 2N consecutive samples of s[n] constitute an OFDM
symbol

I Sum of N different QAM symbols
I At the receiver, the signal is demultiplexed into 2N subcarriers

of data, ŝ[n]
I A 2N-point DFT, defined as:

p̄k [`] =
2N−1∑
n=0

ŝ[2`N + n]e−j(2πnk/2N), (2)

is applied to the inputs, yielding the estimates of pk [`], p̄k [`]
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OFDM Advantages

I What makes OFDM so special?
I Suppose we select the symbol rate 1/T is each subcarrier to be

equal to the separate frequency ∆f of the adjacent subcarriers
I We can then make the subcarriers overlap with each other

while remaining orthogonal over the symbol interval T while
being independent of the relative phase relationship between
subcarriers

I How does this look in the frequency domain?
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Subcarrier Equalization

I Multicarrier modulation lends itself to an efficient receiver
implementation when dealing with frequency-selective fading
channels

I When N is very large for the same finite bandwidth, all the
subcarriers become sufficiently narrow

I Channel frequency response across each subcarrier can be
approximated by a piecewise constant value represented using
a complex gain

I Consequently, equalization is performed using single tap
equalizers per subcarrier such that its product with the
subcarrier complex gain results in unity across each subcarrier

I Employing a single tap per subcarrier in order to mitigate the
effects of the frequency-selective fading yields both hardware
and complexity savings relative to most single carrier solutions
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Multipath Propagation
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Figure : Example of Indoor Multipath Propagation.
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Channel Response
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Figure : Channel Impulse
Response.
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Figure : Channel Frequency Response.
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Mathematical Setup

I Suppose the channel frequency response C (fk),
k = 0, 1, . . . ,N − 1, is equal to:

C (fk) = Ck = |Ck |e jφk , k = 0, 1, . . . ,N − 1 (3)

I Suppose that the received signal on the kth subcarrier is:

rk(t) =

√
2

T
|Ck | (Akc cos(2πfkt + φk) + Aks sin(2πfkt + φk)) + nk(t)

= Real

{√
2

T
CkXke

j2πfk t

}
+ nk(t)

where:
I nk(t) is zero-mean Gaussian random variable
I Ck and φk are known at the receiver
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Counteracting Frequency-Selective Fading

I Demodulate kth subcarrier of the received signal rk(t) using
the basis functions (0 ≤ t ≤ T ):

Φ1(t) =

√
2

T
cos(2πfkt+φk), Φ2(t) = −

√
2

T
sin(2πfkt+φk)

I Sampling output at t = kT yields:

yk = (|Ck |Aki + nkr , |Ck |Akq + nki )

= |Ck |Xk + nk

where nk = nkr + jnki is additive noise

I To effectively equalize the received signal on subcarrier k :

Y′k = Yk/|Ck | = Xk + n′k (4)
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Fast Fourier Transform Approach

I It is possible to devise a multicarrier modulation
communication system based on OFDM using the Fast
Fourier Transform (FFT) and its inverse (IFFT)

I The IFFT replaces the synthesis filter bank while the FFT
replaces the analysis filter bank

I How do we express this formulation in terms of IFFT and FFT
modules?

I Suppose we have complex-valued signal points Xk ,
k = 0, 1, . . . , Ñ − 1

I Compute the inverse discrete Fourier transform (IDFT), which
can be implemented efficiently using the IFFT:

xn =
1√
N

N−1∑
k=0

Xke
j2πnk/N , n = 0, 1, . . . ,N − 1
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QAM Implementation

I If we compute the Ñ-point IDFT, we get a complex-valued
time series that is not equivalent to Ñ QAM-modulated
subcarriers

I Create N = 2Ñ information symbols by defining:

XN−k = X ∗
k , for k = 1, . . . , Ñ − 1

X0 = Real{X0}, XÑ = Imag{X0}

I We get xn to be real-valued at the output of the IDFT (IFFT)
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FFT Butterfly
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Figure : 2× 2 Fast Fourier Transform Butterfly.
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