
ECE4305: Software-Defined Radio Systems and Analysis

Laboratory 2: Basic SDR Implementation
of a Transmitter and a Receiver

C-Term 2011

Objective

This laboratory will provide a theoretical foundation for various modulation schemes and their ro-
bustness to error. You will also be introduced to Simulink as a development tool for communications
systems. This laboratory will implement a “bare bones” communication system in Simulink. This
laboratory assumes a knowledge of MATLAB but little or no knowledge of Simulink.
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1 Theoretical Preparation

This section will provide an understanding of several basic digital modulation schemes that form the
basis of modern communications. You will learn to analyze the power efficiency of various schemes
and analyze mathematically the error robustness of these modulation schemes.

1.1 Digital Modulation Schemes

In analog modulation schemes, the message signal modulates a continuous wave. Conversely, digital
modulation involves having the message signal modulated against a pattern of bits and transforming
them into symbols. As we will see, this can be accomplished by uniquely manipulating the amplitude
and phase information of a signal during each symbol period T .

1.1.1 Pulse Amplitude Modulation

Pulse amplitude modulation (PAM) is a form of signal modulation where the message information is
encoded in the amplitude of a series of signal pulses. Demodulation is performed by detecting the
amplitude level of the carrier at every symbol period.

Pulse amplitude modulation (PAM) constructs symbols with varying amplitudes. The most basic
form of PAM is a series of rectangular pulses with varying amplitudes.

Figure 1: A two bit modulator (PAM-4) will take two bits at a time and will map the signal amplitude
to one of four possible levels, for example 3 volts, 1 volt, 1 volt, and 3 volts.

For more information about pulse amplitude modulation, please refer to Section 5.2 of the course
textbook [6].
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1.1.2 Quadrature Amplitude Modulation

Similar to PAM, quadrature amplitude modulation (QAM) implies some sort of amplitude modulation.
However, QAM modulation is a two-dimensional scheme as apposed to PAM modulation. For instance,
recall the discussion of complex baseband and how 4-QAM is represented:

Si(t) = Ii(t) cos (2πfct) + Qi(t) sin (2πfct), (1)

where Ii(t) is in-phase amplitude, Qi(t) is quadrature amplitude, and fc is carrier frequency.

The two dimensions of the QAM modulation, namely the in-phase and quadrature components,
are orthogonal to each other, which implies you can essentially double your data rate “for free.”
Rectangular QAM can be thought of as two orthogonal PAM signals being transmitted simultaneously.
Mathematically, this may be represented as

√
MPAM +

√
MPAM = M-QAM. QAM constellations

could also take the form of nested circles (called circular QAM), or any other geometric pattern that
involves orthogonal modulators. Which geometric pattern you choose is the result of how easy the
signal constellation is to transmit and how robust the constellation is to noise.

Figure 2: 4-QAM and 16-QAM captured on a scope. Since QAM is usually square, the most common
forms are 16-QAM, 64-QAM, 128-QAM and 256-QAM. By moving to a higher-order constellation, it
is possible to transmit more bits per symbol.

For more information about quadrature amplitude modulation, please refer to Section 5.3 of the course
textbook [6].

1.1.3 Phase Shift Keying

Phase shift keying (PSK) is a digital modulation scheme that conveys data by changing, or modulat-
ing, the phase of a reference signal (the carrier wave).

Any digital modulation scheme uses a finite number of distinct signals to represent digital data. PSK
uses a finite number of phases, each assigned a unique pattern of binary digits. Usually, each phase
encodes an equal number of bits. Each pattern of bits forms the symbol that is represented by the
particular phase. The demodulator, which is designed specifically for the symbol-set used by the
modulator, determines the phase of the received signal and maps it back to the symbol it represents,

4



thus recovering the original data. This requires the receiver to be able to compare the phase of the
received signal to a reference signal such a system is termed coherent.

Phase shift keying (PSK) characterizes symbols by their phase. Mathematically it is represented by:

Si(t) = A cos (2πfct + (2i − 1)
π

m
), for i = 1, ..., log2 m, (2)

where A is the amplitude, fc is carrier frequency, and (2i − 1) π
m

is the phase offset of each symbol.

PSK presents an interesting set of trade-offs with PAM and QAM. In amplitude modulation schemes,
channel equalization is an important part of decoding the correct symbols. In PSK schemes, the phase
of the received signal is much more important than the amplitude information.

Figure 3: 8-PSK captured on a scope. In PSK, the constellation points chosen are usually positioned
with uniform angular spacing around a circle. This gives maximum phase-separation between adjacent
points and thus the best immunity to corruption. They are positioned on a circle so that they can all
be transmitted with the same energy.

For more information about phase shift keying, please refer to Section 5.4 of the course textbook [6].

1.2 Power Efficiency

When analyzing a constellation, one must consider its power efficiency, defined by:

ǫp =
d2

min

Ēb

, (3)
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where dmin is the minimum Euclidean distance between two points that occurs in a signal constella-
tion. Ēb refers to the average energy per bit.

Example: Suppose we have the signals:

S1(t) = Acos(wct + θ) and S0(t) = 0.

Finding the energy of each signal, we see that:

E1 =
A2T

2
, E0 = 0

d2

min = E1 =
A2T

2

Assuming that each signal is equiprobable:

Eb = ES1 × p(1) + ES0 × p(0) = ES1

1

2
=

A2T

4

ǫp =
d2

min

Ēb

= 2

1.3 Probability of Bit Error

One of the most common metrics for measuring the performance of a communications system is the
probability that a bit transmitted will be decoded erroronously (or the probability of bit error, BER).
The probability of error, P (e), is expressed as a sum of pairwise error probabilities, or, the probability
of one received symbol being another, specific received symbol. The pairwise error probability of A
being decoded when B was transmitted is given as:

Q

(

d2
ab

2N0

)

, (4)

where N0 is the variance of the noise. An important note here is that we are assuming the noise is
AWGN, since Q functions apply specifically to Gaussians. So the complete P (e) is expressed as:

Q

(

d2
min

2N0

)

≤ P (e) ≤ Q

(

d2
I1

2N0

)

+ ... + Q

(

d2
IM−1

2N0

)

, (5)

where the second half of the relationship is the summation of every single pairwise error probability.

1.3.1 Error Bounding

Computing each pairwise error probability is not always practical. It is possible to create an upper and
lower bound on P (e) by computing only the pairwise errors of points that are within one degree of the
point of interest. Consider the behavior of the Q(X). As X increases, the solution approaches zero.
You will find that computing the pairwise error probability of points farther away yields negligible
contributions to the total P (e), but can save a significant amount of time as well as cycles. Thus, an
accurate estimate of P (e) can be computed from the following bounds, as shown in Figure 4.
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Figure 4: Error bound demonstrated, where there are four points denoted B, C, D, E to calculate the
pairwise error probability in Eq. 6.

These upper and lower bounds can be expressed as:

Q

(

d2
min

2N0

)

≤ P (e) ≤ Q

(

d2
AB

2N0

)

+ ... + Q

(

d2
AE

2N0

)

. (6)

In order to accurately assess the performance of a communications system, it must be simulated until a
certain number of symbol errors are confirmed [8]. In most cases, 100 errors will give a 95% confidence
interval. In this laboratory, we will simulate 100 errors to characterize the bit error rate of our system.

For more information about probability of error, please refer to Section 6.1 and 6.2 of textbook [6].

1.4 Suggested Readings

Although this laboratory handout provides some information about the fundamentals of digital mod-
ulation schemes, the reader is encouraged to review the material from the following references in order
to gain further insight on these topics.

• Overview of modulation & demodulation

– Chapter 5 in [6]

• Overview of performance of different modulation schemes

– Chapter 6 in [6]

• Introduction to simulation techniques for baseband modulation and demodulation

– Chapter 2 in [7]
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1.5 Problems

1. Find and compare the power efficiency for the three binary signal sets below. Give the relative
performance in decibels. Assume the s1(t) and s2(t) are equally likely.

(a) s1(t) = Bsin(ω0t + φ) and s2(t) = Bsin(ω0t− φ) for 0≤t≤T and where Ēb≤A2T
2

. Find the
best (B, φ).

(b) s1(t) = Asin(ω0t + θ) and s2(t) = Bsin(ω0t) for 0≤t≤T and where Ēb≤
A2

0
T

2
and A0 is

known. Find the best (A, B, θ).

(c) s1(t) = Asin(2πf 0t + ∆t) and s2(t) = Acos(2πf0t − ∆t − θ) for 0≤t≤T . Find the best
peak frequency deviation, ∆, in terms of T .

2. Three different eight-point constellations are proposed as shown in Figure 5. Draw the appro-
priate decision boundaries for each technique in two dimensions, and express the probability
of symbol error, PS in terms of the peak energy-to-noise density ratio. Repeat for an average

energy normalization. Which of the demodulators would be easier to implement? Justify.

Figure 5: Three 8-point signal constellations (8-PSK, “7-around-1”, and “Box”).

3. The signal constellation for a communications system with 16 equiprobable symbols is shown
in Figure 6. The channel is AWGN with noise power spectral density of N0

2
. Compute and

compare the power efficiency of this system with a 16-level PAM system with adjacent amplitude
differences of 2A.
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Figure 6: 16 QAM signal constellation.

4. Exercise 6.4 from course textbook [6].
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2 Software Implementation

Open the txbasic.mdl file available on the course website.

This model demonstrates a very basic transmitter. There is no channel, and therefore no impairments.
Random “1s” and “0s” are generated then transmitted inside 36 bit long frames. The frames pass
through some encoding to make them more robust to noise and are then modulated to 16 QAM.

While you can see all of the blocks of this system, it is not complete. The user defined functions are
empty. It is up to you to complete them. Before you begin writing code, you should examine the
assigned parameters of the defined blocks in the Mask Parameters and attempt to understand why
they are set as they are. When working in Simulink, the format of your data is extremely important.
If you send a [36x1] signal to a port expecting a [37x1] signal not only will your model not run, it
will often throw far more than 1 error, unnecessarily complicating the issue. Understanding how each
block affects your data format will greatly simplify your work in Simulink.

2.1 Repetition Coding

Forward error correction (FEC) is a method of adding redundant data to the transmitted stream to
make it more robust to channel error. There are many types of FEC. You will implement a simple
repetition coder (repetition factor R = 4). This means that if a 0 symbol is to be transmitted, 0000 is
the actually codeword transmitted. Double click on the repetition coder block to write your MATLAB
code. Remember, you can set break points in your functions.

• What are the trade-offs to consider when choosing between a high or a low repetition factor?

2.2 Interleaving

A repetition code is a good start towards a robust transmission, but it is not enough. If your
transmitted data is 101101, employing a repetition factor of 4 yields:

111100001111111100001111.

While this looks robust to error, what happens if during your transmission a noise spike yields a
received binary steam:

111100 −−−−−−−−1100001111,

which is corrupted?

Some of the original data is completely irretrievable. A simple interleaver will mix up the repeated bits
to make the redundancy in the data even more robust to error. Running 111100001111111100001111
through an interleaver might yield something like:

101101101101101101101101.

Different mixing algorithms will change the effectiveness of the interleaver.

When you are done, combine the repetition coder and the interleaver into a single FEC sub-system.
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2.3 BER Calculator

Bit error rate (BER) is one of the primary metrics to consider when measuring the performance of a
communications system. BER is calculated by dividing the total number of errors by the total number
of bits transmitted. The alignment block is accounting for the delay of the signal as it propagates
through your other blocks.

As the model is configured, your BER should be zero. Check this by connecting both the input
ports of the alignment block to the initial bit sequence.

• Note the two persistent variables - what does persistent mean?

• Once you believe you have achieved success, intentionally invert one of the bits. Does your BER
calculated behave as expected?

• What effect might different signal constellations have on the bit error rate?

2.4 Receiver Implementation over an Ideal Channel

Now you will implement the receiver for the transmitter you just built. Since this is an ideal channel,
there is no noise and therefore no impairments to account for. The receiver design is simply the
inverse of your transmitter design, as shown in Figure 7. Feed the decoded signal into your BER
calculator and you should get a BER of zero.

• When configuring your user functions, remember that formatting is important! You may need
to set the expected port sizes in the model explorer.

• By default, the output of a user-defined function is sample based. Certain blocks you
implement expect frame based inputs. You can use the To frame block to rectify this. A
double-lined connection indicates the signal is frame based; a single line connection indicates
the signal is sample based.
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Figure 7: Approximate appearance of final Simulink transceiver model. This model implements a digi-
tal communication system using 16-QAM and repetition coding. You can simulate the communication
channel by adding the AWGN Channel block.
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3 USRP2 Hardware Implementation

In Laboratory 1, you have already observed a digital communication system employing differential
binary phase-shift keying (DBPSK). In this lab, we will revisit this system, and then you are required
to construct a similar DQPSK system.

3.1 Differential Binary Phase-Shift Keying

Differential phase shift keying is a non-coherent form of phase shift keying which avoids the need for
a coherent reference signal at the receiver. Non-coherent receivers are relatively easy and cheap to
build, and hence are widely used in wireless communications.

3.1.1 Transmitter

The transmitter is very straightforward, which is made up of four blocks, as shown in Figure 8.

Figure 8: The structure of DBPSK transmitter, where a binary source is modulated using DBPSK
and filtered using raised cosine pulse shaping filter.

The purpose and special parameters of each block is as follows:

• Signal From Workspace:

– Signal: We use a valid MATLAB expression ([1 0]’) to specify the signal, which generates
a repeated ‘10’. We use this signal since it is easy to observe.

– Sample time: In this parameter, there is a variable named BitRate. This variable is
specified by callback functions, which is introduced in Section 3.1.3.

– Samples per frame: We set this number to be 179, because the input frame size of USRP2
Transmitter block needs to be 358, and Raised Cosine Transmit Filter has an up-
sampling factor of 2.

• DBPSK Modulator Baseband: In DBPSK system, the input binary sequence is differentially
modulated using a DBPSK modulator. In Simulink, this operation is conducted by DBPSK

Modulator Baseband block. The output of this block is a baseband representation of the
modulated signal.
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• Raised Cosine Transmit Filter: This block upsamples and filters the input signal using a
square root raised cosine FIR filter. The block’s icon shows the filter’s impulse response. Similar
to the Signal From Workspace block, the variable named oversampling is defined in callback
functions.

• USRP2 Transmitter: This block has been introduced in detail in Laboratory Tutorial. The
only thing you need to keep in mind is that the best input frame size to this block is 358.

3.1.2 Receiver

The receiver behaves in an inverse manner relative to the transmitter, but there are more things going
on, so it is more complicated than the transmitter. The receiver model is made up of three parts, as
shown in Figure 9.

Figure 9: The structure of DBPSK receiver, where the transmitted signal is received by USRP2

Receiver block and fed into the DBPSK Receiver subsystem. Frequency offset between two USRP2s
should be compensated to ensure signal reception.

The first part is the frequency offset compensator. You should use the frequency offset found in
previous laboratory in this part. The second part is the USRP2 Receiver block, which has been
introduced in Laboratory Tutorial. Finally, the third part is an enabled subsystem, where all the
main operations of this model reside, as shown in Figure 10.

The purpose and special parameters of each block is as follows:

• Frame Conversion: Since the output of the USRP2 Receiver block is sample-based, we use this
block to convert it to frame-based. This block does not make any changes to the input signal
other than the sampling mode.

• Raised Cosine Receive Filter: This block filters the input signal using a square root raised
cosine FIR filter. The Raised Cosine Receive Filter block’s icon shows the filter’s impulse
response.
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Figure 10: The structure of DBPSK Receiver subsystem, where a symbol is filtered using raised
cosine pulse shaping filter and demodulated using DBPSK. The timing recovery is conducted by
Mueller-Muller Timing Recovery block.

• Mueller-Muller Timing Recovery: One of the most significant advantages of a DPSK mod-
ulation scheme is that you do not need to worry about the carrier recovery, which estimates
and compensates for frequency and phase differences between a received signal’s carrier wave
and the receiver’s local oscillator for the purpose of coherent demodulation. However, you still
need to implement some form of timing recovery. The purpose of the timing recovery is to
obtain symbol synchronization. Two quantities must be determined by the receiver to achieve
symbol synchronization. The first is the sampling frequency, and the other is sampling phase.
The Mueller-Muller Timing Recovery block recovers the symbol timing phase of the input
signal using the Mueller-Muller method. This block implements a decision-directed, data-aided
feedback method that requires prior recovery of the carrier phase.

• DBPSK Demodulator Baseband: This block demodulates a signal that was modulated using the
differential binary phase shift keying method. The input is a baseband representation of the
modulated signal.

• To Workspace and Display: These two blocks serve as the sink of this model. Using these two
blocks, you can observe the received data in two ways. You can either observe a portion of data
directly through Display, or save a larger number of data to workspace through To Workspace.

3.1.3 Using Callback Functions

About Callback Functions

Callback functions are a powerful way of customizing your Simulink model. A callback is a function
that executes when you perform various actions on your model, such as clicking on a block or starting
a simulation. You can use callbacks to execute a MATLAB script or other MATLAB commands. You
can use block, port, or model parameters to specify callback functions.

Common tasks you can achieve by using callback functions include:
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• Loading variables into the MATLAB workspace automatically when you open your Simulink
model. 1

• Executing a MATLAB script by double-clicking on a block.

• Executing a series of commands before starting a simulation.

• Executing commands when a block diagram is closed.

Creating Model Callback Functions

You can create model callback functions interactively or programmatically. Use the Callbacks pane
of the model’s Model Properties dialog box to create model callbacks interactively, as shown in
Figure 11. You can access it by right click on the blank space of your model. In Callbacks pane, the
main callbacks you can define include the following: PreLoadFcn, PostLoadFcn, StartFcn, StopFcn,
CloseFcn.

Figure 11: Create model callback functions using Callbacks pane of the model’s Model Properties
dialog box. In our DBPSK example, several parameters are defined in InitFcn.

To create a callback programmatically, use the set param command to assign a MATLAB expression
that implements the function to the model parameter corresponding to the callback. Read the online
documentation Using Callback Functions for more information about creating a callback program-
matically.

3.2 Differential Quadrature Phase-Shift Keying

With the theory of DBPSK presented, it is now time to construct a DQPSK system. Perform the
following tasks:

1This is what happens in our model.

16

http://www.mathworks.com/help/toolbox/simulink/ug/f4-122589.html


• Construct a DQPSK transmitter named DQPSKTx.mdl. Use the DQPSK Modulator Baseband

block and Raised Cosine Transmit Filter block. Choose all the parameters appropriately
for your model.

• Construct a DQPSK transmitter named DQPSKRx.mdl. Use the DQPSK Demodulator Baseband

block and Raised Cosine Receive Filter block. Choose all the parameters appropriately for
your model. Do not forget to compensate the frequency offset between two USRPs.

• Plot the data you have saved to workspace.

• Compare the performance between DBPSK and DQPSK, which one is better? Why?

3.3 USRP2 In-phase/Quadrature Representation

Understanding how a signal is represented can greatly enhance one’s ability to analyze and design
baseband digital communication systems. As mentioned in Laboratory 1, a bandpass signal can be
represented by the sum of its in-phase (I) and quadrature (Q) components. Moreover, the data input
to the USRP2 board is complex, which includes I and Q. Since I and Q play a very important role in
digital communications, now you are going to observe the I and Q data on transmitter and receiver
sides.

3.3.1 Observing In-phase and Quadrature Data

For the transmitter side, you can use siggen.mdl from Laboratory 1.

Figure 12: The structure of siggen.mdl. In this model, since the USRP2 Transmitter block requires
the complex input, the Real-Imag to Complex block converts real and imaginary inputs to a complex-
valued output signal.

For the receiver side, you can download observeiq.mdl from course website. The main subsystem
of this model is shown in Figure 13, where two Vector Scope blocks are attached to the real and
imaginary output.

Specify the following six sets of values in siggen.mdl:
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Figure 13: The structure of main subsystem of observeiq.mdl. Since the USRP2 Receiver block
produces the complex output, the Complex to Real-Imag block converts the complex-valued signal
to real and imaginary components, which you can observe using two Vector Scope.

Set Index Real Imaginary
Set 1 0 0
Set 2 0 1
Set 3 1 0
Set 4 0 sine
Set 5 sine 0
Set 6 sine sine

Record the corresponding output in observeiq.mdl by saving the plots of Vector Scope. Is the
output the same as the input you have specified?

3.3.2 Mathematical Derivation

The behavior of the in-phase and quadrature data is closely related to the structure of USRP2 board,
especially the digital up converter (DUC) and digital down converter (DDC).

At the transmitter path, a baseband I/Q complex signal is sent to the USRP2 board. The digital
up converter will interpolate the signal, upconvert it to the IF band, and finally send it through the
DAC. The structure of DUC is shown in Figure 14, which is named as complex multiplier.
At the receiver path, the standard FPGA configuration includes digital down converters (DDC)
implemented with 4-stage cascaded integrator-comb (CIC), as shown in Figure 15. First, the DDC
down-converts the received signal from the IF band to the base band. Next, it decimates the signal
so that the data rate can be adapted by the USB 2.0 and is reasonable for the computers’ computing
capability. The complex input signal (IF) is multiplied by the constant frequency (usually the IF)
exponential signal. The resulting signal is also complex, and centered at 0. Then the signal is
decimated with a factor M . The decimator can be treated as a low pass filter followed by a down
sampler.
Given this insight on the structure of DUC and DDC, you can now perform the following mathematical
derivations:

• In Figure 14, suppose the input I/Q complex signal is Iin(t) and Qin(t), the carrier frequency is
ωc, what is the output of the DUC, denoted as I

′

(t) and Q
′

(t)?
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Figure 14: The structure of digital up converter on transmitter path, where a baseband I/Q complex
signal I1(t) and Q1(t) is upconverted to the IF band by a carrier frequency of ωc.

• In Figure 15, suppose the input I/Q complex signal is I
′

(t) and Q
′

(t), which has been expressed
in the previous step. Also assume that the the carrier frequency has a little offset ∆ω compared
to the DUC, so it is ωc+∆ω. What is the output after CORDIC and before CIC? Please express
them as I

′′

(t) and Q
′′

(t).

• In Figure 15, for simplicity, the rest part after CORDIC, including CIC and 1/2 Band, can
be viewed as a low pass filter. I

′′

(t) and Q
′′

(t) will go through the low pass filters, where the
double-frequency component like 2ωc will disappear. What is the output of the low pass filters,
denoted as Iout(t) and Qout(t)?

• Given Iout(t) and Qout(t), can you accurately recover Iin(t) and Qin(t)? If yes, mathematically
give the relationship between Iin(t) , Qin(t) and Iout(t) , Qout(t). If no, give the reasons.

HINT: You need to use the trigonometric identities when expressing the I and Q data.
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Figure 15: The structure of digital down converter on receiver path, where the input RF signal I1(t)
and Q1(t) is first down-converted to the IF band by a carrier frequency of ωc, and then decimated with
a factor M . Please note, the I1(t) and Q1(t) here is different from the I1(t) and Q1(t) in Figure 14.
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4 Open-ended Design Problem: Frame Synchronization

4.1 Frame Synchronization

Frame synchronization is the process in the telecommunications transmission system to align the dig-
ital channel (time slot) at the receiving end with the corresponding time slot at the transmission end
as it occurs. For example, you transmit a packet which contains numerous frames. At the receiver
side, you want to know where a specific frame actually starts, then you need to implement frame
synchronization.

Frame synchronization involves the following steps: In the first step, the transmitter injects a fixed-
length symbol pattern, called a marker, into the beginning of each frame to form a marker and frame
pair, which is known as a packet. Packets are then converted from symbols into a waveform and
transmitted through the channel. The receiver detects the arrival of packets by searching for the
marker, removes the markers from the data stream, and recovers the transmitted messages. Marker
detection is the most important step for frame synchronization.

In this problem, we will first introduce two Simulink models that implements frame synchronization.
In these models, Barker code is employed as the marker. Then, you are going to build upon the
second model and incorporate the USRP2 into it. In the end, you need to transmit “Hello world”
from end to end using two USRP2s. The purpose of this problem is to prepare you for the course
design project, in which you will your values in a serial string format.

4.2 Barker Code

A Barker code is a sequence of N values of +1 and -1:

aj for j = 1, 2, ..., N (7)

such that:
∣

∣

∣

∣

∣

N−v
∑

j=1

ajaj+v

∣

∣

∣

∣

∣

≤ 1 (8)

for all 1 ≤ v < N .

Barker codes are commonly used for frame synchronization in digital communication systems. Barker
codes have a length of at most 13 and possess low correlation sidelobes. A correlation sidelobe is the
correlation of a codeword with a time-shifted version of itself. An example of autocorrelation function
of Barker-7 code is shown in Figure 16. It is obvious from this figure that the sidelobes are low.

4.3 Simulink Models

In this section, we will introduce two Simulink models that implements frame synchronization using
Barker code as the marker. The first model illustrates the basic idea and the second model employs
the idea.

21



Figure 16: Autocorrelation function of Barker-7 code, which has a low sidelobes.

Figure 17: Simulink model that realizes frame synchronization using Barker code.
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4.3.1 Basic Model

Download and open mFindFrameSync.mdl from course website, as shown in Figure 17.
There are several key blocks in this model:

• Barker Code Generator: In this block, you specify the length of the Barker code, and this
block will give the corresponding codeword.

• Bipolar to Unipolar Converter: The Barker code is either 1 or -1. However, the Bernoulli
binary is either 1 or 0. In order to attach the Barker code to your frame, you need to change
its format.

• Matrix Concatenate: The Barker code is attached to the beginning of each frame to form a
marker and frame pair, which is known as a packet.

• Delay: This block is used to simulate a real channel, which incurs a delay of 5.

• Error Rate Calculation: This block uses the delay you have found to calculate the compu-
tation delay and verifies whether you have found the correct. If it is, the error rate should be
0. You can run the model and see.

There are two key subsystems in this model:

• Compute Delay: Align Signals → Enabled Delay Computation → Compute Delay, as shown in
Figure 18(a).
This subsystem calculates the delay of the channel by detecting the peak of the correlation of
the received data and the Barker code.

• Consecutive Delay Comparison: Align Signals → Consecutive Delay Comparison, as shown
in Figure 18(b).
This subsystem checks whether the calculated delay remains the same for numDelayCalcs it-
erations. If it is, the Enabled Delay Computation subsystem is disabled, such that you don’t
need to calculate the delay again and again. This subsystem guarantees the result of this model,
and also improves the efficiency.

4.3.2 Application of the Basic Idea

According to the basic idea, we can construct a more advanced digital communication system. Down-
load and open mFindFrameStart.mdl from course website, as shown in Figure 19. Previously, what
we have done is to transmit binary bits. However, using this model, we can transmit a sentence, such
as “Hello world”. Therefore, in addition to this Simulink model, we need another m-file to conduct the
converter between characters and binary bits. You can download the m-file charToBitsAndBack.m

from course website.
The variable ‘Delay’ is a most important value in this model, which provides the information concern-
ing where the start of the frame is, such that the receiver could know where should be the starting
point of decoding.

Compared to the basic model, there are three different blocks:
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(a) Compute Delay subsystem.

(b) Consecutive Delay Comparison subsystem.

Figure 18: Two key subsystems in Simulink model mFindFrameSync.mdl.

Figure 19: Simulink model that realizes frame transmission using Barker code.

• Signal From Workspace: In this block, you specify the source from workspace. For example,
we would like to transmit “Hello world”, so we run charToBitsAndBack.m and get the corre-
sponding bit streams. We save this bit stream in a variable called ‘sBit’ so that it can be used
as the signal source. In this block, ‘samples per frame’ should be the same as the length of
‘sBit’. Although the length of bit stream for “Hello world” is 77, 10 zeros are added to the end
of this bit stream, so the length of ‘sBit’ becomes 87.

• MATLAB Function: We use a MATLAB Function to pick up the useful information out of a
frame. In this example, delay+13+1 is the first bit in the stream and delay+13+77 is the last
bit. 13 corresponds to the length of the Barker code, and 77 is the length of bit stream for
“Hello world”. Therefore, if you want to transmit some other sentences, or you want to use a
Barker code of some other length, these values need to be modified.
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• To Workspace: We save the useful bits to workspace and these bits can be converted to ASCII
characters using the second half of charToBitsAndBack.m.

4.3.3 Incorporating USRPs

When incorporating USRPs into the second model, there are two things you need to pay attention
to. The first one is the frame size, since USRP2 Transmitter and Receiver blocks require a frame
size of 358. The second thing is the modulation scheme, you need to use DBPSK to ensure the best
performance of bit transmission.

4.4 Hints for Implementation

• You will need to buffer N frames of data

– Makes this less “real-time”, but that is OK.

– Trade-off between buffer size and latency.

• Try working with the raw data offline in MATLAB before trying out rea-time data retrieval
or/and Simulink model that do this automatically

4.5 Hints for Debugging

• Collect incoming data from USRP2 block to .mat file

• Xcorr Barker sequence with stored incoming data in MATLAB

• Find the mode of the largest correlation value every 179 samples (visualize it, don’t expect it
to be “13”)

• Take the mean of the mode (mode can be off by ±1)

• Feed incoming data back into your Simulink receiver model (do not use USRP2 again) and fix
delay

• Once verified, implement entirely in Simulink
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5 Lab Report Preparation & Submission Instructions

Include all your answers, results, and source code in a lab report formatted as follows:

• Cover page: includes course number, laboratory title, names and student numbers of team,
submission date

• Table of contents

• Pre-lab

• Responses to laboratory questions and explanation of observations

• Responses to open-ended design problem

• Source code

Please include images and outputs wherever possible, as well as insights on your laboratory.

Each group is to submit a single report electronically (in PDF format not exceeding 2MB) to
alexw@ece.wpi.edu by scheduled due date. Reports that do not meet these specifications will be
returned without review.
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