
TCP - Transmission Control Protocol (TCP Basic Handling)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 4.0

14-Jul-07 09:40 (Page 1)

This diagram was generated with EventStudio System Designer 4.0. (http://www.EventHelix.com/EventStudio) 

Copyright © 2000-2007 EventHelix.com Inc. All Rights Reserved. 

LEG: About TCP 

TCP (Transmission Control Protocol) provides a reliable end to end service that delivers packets over the Internet. Packets are delivered in
sequence without loss or duplication. 

This sequence diagram describes the setup and release of a TCP connection. Datagram handling with a maximum segment size of 512 is also
shown. The byte level sequence numbers and TCP Ack handling is also shown. 

1:create Server Application creates a Socket

Closed The Socket is created in Closed state

seq_num = 100 Server sets the initial sequence number to 100

2:Passive_Open Server application has initiated a passive open. In
this mode, the socket does not attempt to
establish a TCP connection. The socket listens for
TCP connection request from clients

Listen Socket transitions to the Listen state

3:create Client Application creates Socket

Closed The socket is created in the Closed state

seq_num = 0 Initial sequence number is set to 0

4:Active_Open Application wishes to communicate with a
destination server using a TCP connection. The
application opens a socket for the connection in
active mode. In this mode, a TCP connection will
be attempted with the server.
Typically, the client will use a well known port
number to communicate with the remote Server.
For example, HTTP uses port 80.
LEG: Client initiates TCP connection 

Client initiated three way handshake to establish a TCP connection 

5:SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

Client sets the SYN bit in the TCP header to
request a TCP connection. The sequence number
field is set to 0. Since the SYN bit is set, this
sequence number is used as the initial sequence
number

SYN Sent Socket transitions to the SYN Sent state

6:SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

SYN TCP segment is received by the server

7:SYN_ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Server sets the SYN and the ACK bits in the TCP
header. Server sends its initial sequence number
as 100. Server also sets its window to 65535
bytes. i.e. Server has buffer space for 65535
bytes of data. Also note that the ack sequence
numer is set to 1. This signifies that the server
expects a next byte sequence number of 1

SYN Received Now the server transitions to the SYN Received
state

8:SYN_ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Client receives the SYN_ACK TCP segment



TCP - Transmission Control Protocol (TCP Basic Handling)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 4.0

14-Jul-07 09:40 (Page 2)

9:ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Client now acknowledges the first segment, thus
completing the three way handshake. The receive
window is set to 5000. Ack sequence number is
set to 101, this means that the next expected
sequence number is 101.

Established At this point, the client assumes that the TCP
connection has been established

10:ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Server receives the TCP ACK segment

Established Now the server too moves to the Established
state
LEG: Short data transfer 

Data transfer phase: Here a short data transfer takes place, thus TCP slow start has little impact. 

11:Data
size = 1024

Client application sends 1024 bytes of data to the
socket

Split data into TCP segments This TCP connection limits TCP segments to 512
bytes, thus the received data is split into 2 TCP
segments

12:TCP_Segment
seq_num = 1,
len = 512

The first TCP segment is sent with a sequence
number of 1. This is the sequence number for the
first byte in the segment.
(Note that unlike other protocols, TCP maintains
sequence numbers at byte level. The sequence
number field in the TCP header corresponds to
the first byte in the segment.)

13:TCP_Segment
seq_num = 513,
len = 512

Bytes in the first TCP segment correspond to 1 to
512 sequence numbers. Thus, the second TCP
segment contains data starting with 513
sequence number

14:TCP_Segment
seq_num = 1,
len = 512

15:TCP_Segment
seq_num = 513,
len = 512

Server receives both the segments

Assemble TCP Segments Server receives two consecutive segments, thus it
assembles the segments

16:Data
size = 1024

Assembled Data is passed to the Server
Application

17:ACK
ack_num = 1025

Server acknowledges the data segments with the
next expected sequence number as 1025 (TCP
typically sends an acknowledgement every two
received segments)

18:ACK
ack_num = 1025

19:Data
size = 700

Now server responds back with data for the client

Split data into TCP segments



TCP - Transmission Control Protocol (TCP Basic Handling)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 4.0

14-Jul-07 09:40 (Page 3)

20:TCP_Segment
seq_num = 101,
len = 512

The starting sequence number on the server side
was 100. Thus this packet starts with 101 as the
sequence number.

21:TCP_Segment
seq_num = 613,
len = 188

22:TCP_Segment
seq_num = 1,
len = 512

23:TCP_Segment
seq_num = 613,
len = 188

Client has received both the TCP segments

Assemble TCP Segments

24:Data
size = 700

Socket passes data to Client application

25:ACK
ack_num = 801

Client sends a TCP ACK with the next expected
sequence number set to 801. This acknowledges
two TCP segments.

26:ACK
ack_num = 801

LEG: Client initiates TCP connection close 

Client initiates TCP connection close 

27:Close Client application wishes to release the TCP
connection

28:FIN Client sends a TCP segment with the FIN bit set in
the TCP header

FIN Wait 1 Client changes state to FIN Wait 1 state

29:FIN Server receives the FIN

30:ACK Server responds back with ACK to acknowledge
the FIN

Close Wait Server changes state to Close Wait. In this state
the server waits for the server application to close
the connection

31:ACK Client receives the ACK

FIN Wait 2 Client changes state to FIN Wait 2. In this state,
the TCP connection from the client to server is
closed. Client now waits close of TCP connection
from the server end

32:Close Server application closes the TCP connection

33:FIN FIN is sent out to the client to close the
connection

Last Ack Server changes state to Last Ack. In this state the
last acknowledgement from the client will be
received

34:FIN Client receives FIN

35:ACK Client sends ACK

36:Close_Timer Client starts a timer to handle scenarios where
the last ack has been lost and server resends FIN



TCP - Transmission Control Protocol (TCP Basic Handling)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 4.0

14-Jul-07 09:40 (Page 4)

Time Wait Client waits in Time Wait state to handle a FIN
retry

37:ACK Server receives the ACK

Closed Server moves the connection to closed state

38:delete

39:Close_Timer Close timer has expired. Thus the client end
connection can be closed too.

Closed

40:delete


	TCP Basic Handling
	About TCP
	Client initiates TCP connection
	Short data transfer
	Client initiates TCP connection close


