
TCP - Transmission Control Protocol (TCP Fast Transmit and Recovery)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 4.0

29-Jul-07 07:37 (Page 1)

This diagram was generated with EventStudio System Designer 4.0. (http://www.EventHelix.com/EventStudio)

Copyright © 2000-2007 EventHelix.com Inc. All Rights Reserved.

LEG: About Fast Retransmit and Fast Recovery

TCP Slow Start and Congestion Avoidance lower the data throughput drastically when segment loss is detected. Fast Retransmit and Fast
Recovery have been designed to speed up the recovery of the connection, without compromising its congestion avoidance characteristics.

Fast Retransmit and Recovery detect a segment loss via duplicate acknowledgements. When a segment is lost, TCP at the receiver will keep
sending ack segments indicating the next expected sequence number. This sequence number would correspond to the lost segment. If only
one segment is lost, TCP will keep generating acks for the following segments. This will result in the transmitter getting duplicate acks (i.e.
acks with the same ack sequence number)

create Server Application creates a Socket

Closed The Socket is created in Closed state

seq_num = 100 Server sets the initial sequence number to 100

Passive_Open Server application has initiated a passive open. In
this mode, the socket does not attempt to
establish a TCP connection. The socket listens for
TCP connection request from clients

Listen Socket transitions to the Listen state

create Client Application creates Socket

Closed The socket is created in the Closed state

seq_num = 0 Initial sequence number is set to 0

Active_Open Application wishes to communicate with a
destination server using a TCP connection. The
application opens a socket for the connection in
active mode. In this mode, a TCP connection will
be attempted with the server.
Typically, the client will use a well known port
number to communicate with the remote Server.
For example, HTTP uses port 80.
LEG: Client initiates TCP connection

Client initiated three way handshake to establish a TCP connection

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

Client sets the SYN bit in the TCP header to
request a TCP connection. The sequence number
field is set to 0. Since the SYN bit is set, this
sequence number is used as the initial sequence
number

SYN Sent Socket transitions to the SYN Sent state

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

SYN TCP segment is received by the server

SYN_ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Server sets the SYN and the ACK bits in the TCP
header. Server sends its initial sequence number
as 100. Server also sets its window to 65535
bytes. i.e. Server has buffer space for 65535
bytes of data. Also note that the ack sequence
numer is set to 1. This signifies that the server
expects a next byte sequence number of 1

SYN Received Now the server transitions to the SYN Received
state

SYN_ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Client receives the SYN_ACK TCP segment

TCP - Transmission Control Protocol (TCP Fast Transmit and Recovery)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 4.0

29-Jul-07 07:37 (Page 2)

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Client now acknowledges the first segment, thus
completing the three way handshake. The receive
window is set to 5000. Ack sequence number is
set to 101, this means that the next expected
sequence number is 101.

Established At this point, the client assumes that the TCP
connection has been established

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Server receives the TCP ACK segment

Established Now the server too moves to the Established
state
LEG: Fast Retransmit and Recovery

TCP Connection begins with slow start. The congestion window grows from an initial 512 bytes to 70000 bytes

cwnd = 70000 Congestion window has reached 70000 bytes

Data
size = 4096

Client App transmits 4Kbytes of data

Segment data into 8 TCP segments TCP segments data to 8 TCP segments (each
segment is 512 bytes)

TCP_Segment
seq_num = 100000

TCP segment (start sequence number = 100000)
is transmitted

TCP_Segment
seq_num = 100512

TCP segment (start sequence number = 100512)
is transmitted

TCP_Segment
seq_num = 101024

TCP segment (start sequence number = 101024)
is transmitted

TCP_Segment
seq_num = 101536

TCP segment (start sequence number = 101536)
is transmitted

TCP_Segment
seq_num = 102048

TCP segment (start sequence number = 102048)
is transmitted

TCP_Segment
seq_num = 102560

TCP segment (start sequence number = 102560)
is transmitted

TCP_Segment
seq_num = 103072

TCP segment (start sequence number = 103072)
is transmitted

TCP_Segment
seq_num = 103584

TCP segment (start sequence number = 103584)
is transmitted

TCP_Segment
seq_num = 100000

TCP segment (start sequence number = 100000)
is delivered to the receiver

Data
size = 512

TCP passes 512 bytes of data to the higher layer

TCP Segment with sequence number
100512 is lost

TCP segment (start sequence number = 100512)
is lost due to congestion

TCP_Segment
seq_num = 101024

TCP Segment with start sequence number
101024 is received. TCP realizes that a segment
has been missed. TCP buffers the out of

TCP - Transmission Control Protocol (TCP Fast Transmit and Recovery)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 4.0

29-Jul-07 07:37 (Page 3)

sequence segment as TCP cannot deliver out of
sequence data to the application.

ACK
ack_num = 100512

TCP sends an acknowledgement to the Sender
with the next expected sequence number set to
100512.

TCP_Segment
seq_num = 101536

TCP receives the next segment. This and the
following out of sequence segments will be
buffered by TCP.

ACK
ack_num = 100512

TCP sends another acknowledgement with the
next expected sequence number still set to
100512. This is a duplicate acknowledgement

TCP_Segment
seq_num = 102048

ACK
ack_num = 100512

TCP keeps acknowledging the received segments
with the next expected sequence number as
100512

TCP_Segment
seq_num = 102560

ACK
ack_num = 100512

TCP_Segment
seq_num = 103072

ACK
ack_num = 100512

TCP_Segment
seq_num = 103584

ACK
ack_num = 100512

Fast Retransmit: TCP receives duplicate acks and it decides to retransmit the segment, without waiting for the segment timer to expire. This
speeds up recovery of the lost segment

ACK
ack_num = 100512

Client receives acknowledgement to the segment
with starting sequence number 100512

ACK
ack_num = 100512

First duplicate ack is received. TCP does not
know if this ack has been duplicated due to out of
sequence delivery of segments or the duplicate
ack is caused by lost segment.

Fast Retransmit At this point TCP moves to the fast retransmit
state. TCP will look for duplicate acks to decide if
a segment needs to be retransmitted
Note: TCP segments sent by the sender can be
delivered out of sequence to the receiver. This
can also result in duplicate acks. Thus TCP waits
for 3 duplicate acks before concluding that a
segment has been missed.

ACK
ack_num = 100512

Second duplicate ack is received

ACK
ack_num = 100512

Third duplicate ack is received. TCP now assumes
that duplicate acks point to a segment that has
been lost

TCP - Transmission Control Protocol (TCP Fast Transmit and Recovery)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 4.0

29-Jul-07 07:37 (Page 4)

ssthresh = cwnd/2 = 70000/2 = 35000 TCP uses the current congestion window to mark
the point of congestion. It saves the slow start
threshold as half of the current congestion
window size. If current cwnd is less than 4
segments, cwnd is set to 2 segments

TCP_Segment
seq_num = 100512

TCP retransmits the missing segment i.e. the
segment corresponding to the ack sequence
number in the duplicate acks

Fast Recovery: Once the lost segment has been transmitted, TCP tries to maintain the current data flow by not going back to slow start. TCP
also adjusts the window for all segments that have been buffered by the receiver.

Fast Recovery In "Fast Recovery" state, TCPs main objective is to
maintain the current data stream data flow.

cwnd = ssthresh + 3 segments = 35000 +
3*512 = 36536

Since TCP started taking action on the third
duplicate ack, it sets the congestion window to
ssthresh + 3 segment. This halfs the TCP window
size and compensates for the TCP segments that
have already been buffered by the receiver.

ACK
ack_num = 100512

Another duplicate ack is received. This means
that the receiver has buffered one more segment

cwnd = cwnd + 1 segment = 37048 TCP again inflates the congestion window to
compensate for the delivered segment

ACK
ack_num = 100512

Yet another ack is received, this will further inflate
the congestion window

cwnd = cwnd + 1 segment = 37560

TCP_Segment
seq_num = 100512

Finally, the retransmitted segment is delivered to
the server

Data
size = 3584

Now TCP can pass the just received missing
segment and all the buffered segments to the
application layer

ACK
ack_num = 104096

Now TCP acknowledges all the segments that it
had buffered

ACK
ack_num = 104096

The cummulative TCP ack is delivered to the
client

Congestion Avoidance

Congestion Avoidance The connection has moved back to the
congestion avoidance state.

cwnd = ssthresh = 35000 TCP takes a congestion avoidance action and sets
the segment size back to the slow start threshold.
The TCP window will now increase by a
maximum of one segment per round trip
LEG: Client initiates TCP connection close

Client initiates TCP connection close

Close Client application wishes to release the TCP
connection

FIN Client sends a TCP segment with the FIN bit set in
the TCP header

FIN Wait 1 Client changes state to FIN Wait 1 state

FIN Server receives the FIN

ACK Server responds back with ACK to acknowledge
the FIN

TCP - Transmission Control Protocol (TCP Fast Transmit and Recovery)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 4.0

29-Jul-07 07:37 (Page 5)

Close Wait Server changes state to Close Wait. In this state
the server waits for the server application to close
the connection

ACK Client receives the ACK

FIN Wait 2 Client changes state to FIN Wait 2. In this state,
the TCP connection from the client to server is
closed. Client now waits close of TCP connection
from the server end

Close Server application closes the TCP connection

FIN FIN is sent out to the client to close the
connection

Last Ack Server changes state to Last Ack. In this state the
last acknowledgement from the client will be
received

FIN Client receives FIN

ACK Client sends ACK

Close_Timer Client starts a timer to handle scenarios where
the last ack has been lost and server resends FIN

Time Wait Client waits in Time Wait state to handle a FIN
retry

ACK Server receives the ACK

Closed Server moves the connection to closed state

delete

Close_Timer Close timer has expired. Thus the client end
connection can be closed too.

Closed

delete

	TCP Fast Transmit and Recovery
	About Fast Retransmit and Fast Recovery
	Client initiates TCP connection
	Fast Retransmit and Recovery
	Client initiates TCP connection close

