Homework 1 Solutions

Problem 2.1: Rather than doing the details of the convolution, we simply sketch the shapes of the waveforms. For a signal $s=s_{c}+j s_{s}$ and a filter $h=h_{c}+j h_{s}$, the convolution

$$
y=s * h=\left(s_{c} * h_{c}-s_{s} * h_{s}\right)+j\left(s_{c} * h_{s}+s_{s} * h_{c}\right)
$$

For $h(t)=s_{m f}(t)=s^{*}(-t)$, rough sketches of $\operatorname{Re}(y), \operatorname{Im}(y)$ and $|y|$ are shown in Figure 1. Clearly, the maximum occurs at $t=0$.

Figure 1: The convolution of a signal with its matched filter yields at peak at the origin.

Problem 2.2:

(a) Multiplication in the time domain corresponds to convolution in the frequency domain. The two sinc functions correspond to boxcars in the frequency domain, convolving which gives that $S(f)$ has a trapezoidal shape, as shown in Figure 2.
(b) We have

$$
u(t)=s(t) \cos (100 \pi t)=s(t) \frac{e^{j 100 \pi t}+e^{-j 100 \pi t}}{2} \leftrightarrow U(f)=\frac{S(f-50)+S(f+50)}{2}
$$

The spectrum $U(f)$ is plotted in Figure 2.

Figure 2: Solution for Problem 2.2.

Problem 2.3: The solution is sketched in Figure 3.
(a) We have $s(t)=I_{[-5,5]} * I_{[-5,5]}$. Since $I_{[-5,5]}(t) \leftrightarrow 10 \operatorname{sinc}(10 f)$, we have $S(f)=100 \operatorname{sinc}^{2}(10 f)$.
(b) We have

$$
u(t)=s(t) \sin (1000 \pi t)=s(t) \frac{e^{j 1000 \pi t}-e^{-j 100 \pi t}}{2 j} \leftrightarrow U(f)=\frac{S(f-50)-S(f+50)}{2 j}
$$

Figure 3: Solution for Problem 2.3.

Problem 2.4: Part (a) is immediate upon expanding $\|s-a r\|^{2}$.
(b) The minimizing value of a is easily found to be

$$
a_{\text {min }}=\frac{\langle s, r\rangle}{\|r\|^{2}}
$$

Substituting this value into $J(a)$, we obtain upon simplification that

$$
J\left(a_{\min }\right)=\|s\|^{2}-\frac{\langle s, r\rangle^{2}}{\|r\|^{2}}
$$

The condition $J\left(a_{\min }\right) \geq 0$ is now seen to be equivalent to the Cauchy-Schwartz inequality.
(c) For nonzero s, r, the minimum error $J\left(a_{\text {min }}\right)$ in approximating s by a multiple of r vanishes if and only if s is a multiple of r. This is therefore the condition for equality in the Cauchy-Scwartz inequality. For $s=0$ or $r=0$, equality clearly holds. Thus, the condition for equality can be stated in general as: either s is a scalar multiple of r (this includes $s=0$ as a special case), or r is a scalar multiple of s (this includes $r=0$ as a special case).
(d) The unit vector in the direction of r is $u=\frac{r}{\|r\|}$. The best approximation of s as a multiple of r is its projection along u, which is given by

$$
\hat{s}=\langle s, u\rangle u=\left\langle s, \frac{r}{\|r\|}\right\rangle \frac{r}{\|r\|}
$$

and the minimum error is $J\left(a_{\text {min }}\right)=\|s-\hat{s}\|^{2}$.

