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Fragmentation and Flow
Regulation of the World’s

Large River Systems
Christer Nilsson,1*. Catherine A. Reidy,1* Mats Dynesius,1

Carmen Revenga2

A global overview of dam-based impacts on large river systems shows that
over half (172 out of 292) are affected by dams, including the eight most
biogeographically diverse. Dam-impacted catchments experience higher
irrigation pressure and about 25 times more economic activity per unit of
water than do unaffected catchments. In view of projected changes in climate
and water resource use, these findings can be used to identify ecological risks
associated with further impacts on large river systems.

Humans have extensively altered river systems

through impoundments and diversions to meet

their water, energy, and transportation needs.

Today, there are 945,000 dams above 15 m

high, capable of holding back 96500 km3 of

water (1), or about 15% of the total annual

river runoff globally (2). Over 300 dams are

defined as giant dams, which meet one of

three criteria on height (9150 m), dam volume

(915 million m3), or reservoir storage (925

km3) (3). The recently constructed Three

Gorges Dam on the Chang Jiang (Yangtze)

in China is the largest, 181 m high and with a

reservoir storing 939 km3 (4, 5). Although

statistics summarizing the world_s large dams

are available (3, 4, 6, 7), detailed multiscale

data have not been synthesized globally.

Catchment-scale impacts of dams on eco-

systems are generally well known, with both

upstream and downstream effects stemming

from inundation, flow manipulation, and frag-

mentation (8–10). Inundation destroys terres-

trial ecosystems and eliminates turbulent

reaches, disfavoring lotic biota. It can cause

anoxia, greenhouse gas emission, sedimenta-

tion, and an upsurge of nutrient release in new

reservoirs (6, 11, 12). Resettlement associated

with inundation can result in adverse human

health effects and substantial changes in land

use patterns (13, 14). Flow manipulations hin-

der channel development, drain floodplain

wetlands, reduce floodplain productivity, de-

crease dynamism of deltas, and may cause ex-

tensive modification of aquatic communities

(15–18). Dams obstruct the dispersal and mi-

gration of organisms, and these and other

effects have been directly linked to loss of

populations and entire species of freshwater

fish (19–21). The World Commission on

Dams produced the most comprehensive re-

view of dam impacts yet (22), with illustra-

tive catchment-scale case studies. However,

data were not available for a global analysis

based on subcatchment-scale resolution, in-

tegrating hydrologic, ecological, and socio-

economic data. Such a synthesis is needed to

understand the multiple spatial, temporal, and

interactive impacts of dams.

Here, we present a global overview of flow

regulation and channel fragmentation in the

world_s largest river systems, which comprise

a total virgin mean annual discharge (VMAD,

the discharge before any substantial human

manipulations) of some 790,000 m3 sj1, or

60% of the world_s river runoff. We proceeded

by (i) identifying 153 large river systems

(LRSs) in Latin America, Africa, Asia, and

Australasia that we had not previously assessed

(23), (ii) locating and gathering storage capac-

ity data for their dams, (iii) quantifying channel

fragmentation by dams, (iv) and quantifying

flow regulation by relating storage capacity

to discharge. We also updated these same

data for 139 systems that we had previously

assessed in the Northern Hemisphere (23),

combined the two data sets for a total of 292

river systems, and, on the basis of these data,

classified the river systems as either un-

affected, moderately affected, or strongly

affected (24). We were unable to assess

rivers in most of Indonesia and a small part

of Malaysia (because of a lack of reliable

discharge data). We included irrigation data

for all 292 LRSs and analyzed global

distribution of impact relative to terrestrial

biomes and economic activity.

We defined an LRS as a system that has,

anywhere in its catchment, a river channel sec-

tion with a VMAD of Q350 m3 sj1 (23, 25).

By river system, we mean entire networks of

stream and river channels interconnected by

surface freshwater, from the headwaters to the

sea (26). The 292 LRSs (table S1 and Fig. 1)

drain 54% of the world_s land area. North and

Central America contain more LRSs (88 total)

than any other continent, but on average these

systems contribute less water and have smaller

catchment areas than do those of Asia, Africa,

and South America. Of the 10 LRSs with

highest discharge, 6 lie in Asia, 2 in South

America, 1 in Africa, and 1 in North and Cen-

tral America.

The catchments of LRSs encompass at least

some part of all 16 of the world_s nonmarine

biomes as classified by Olson et al. (27) and

950% of 11 of these biomes, including 87% of

all boreal forests and 83% of all flooded grass-

lands and savannahs. The biomes with least

proportion of their surface area in LRSs are

rock and ice (1%); mangroves (17%); and

Mediterranean forests, woodlands, and scrub

(19%). In all, 72 LRSs span only one biome,

whereas the Ganges-Brahmaputra system

(AS-65) encompasses the widest diversity

(10 biomes), followed by the Amazonas-

Orinoco (SA-11; these rivers have a natural

cross-channel), Amur (AS-20), Yenisei (AS-5),

Zambezi (AF-6), and Indus (AS-73) systems,

each spanning eight.

Nearly half (139) of all LRSs (48%) remain

unfragmented (28) by dams in the main chan-

nel, 119 systems (41%) have unfragmented

tributaries, and 102 systems (35%) are com-

pletely unfragmented. Europe contains the

smallest number of completely unfragmented

LRSs (just three rivers in northwestern Rus-

sia). The continent with the greatest number

(35) of unfragmented LRSs is North and Cen-

tral America, and the greatest proportion is

in Australasia (74%). Twelve LRSs (9 in Eu-

rope and 3 in the United States) have G25% of

the main channel_s length left unfragmented.

The greatest flow regulation (29) was for

the Volta river system in Africa (AF-19, 428%).

In North and Central America, both the

Manicougan (NA-35) and Colorado (NA-70)

systems are regulated 9250%, and in South

America the most highly regulated system is

the Rio Negro in Argentina (SA-22, 140%).

The most highly regulated systems in Asia

are the Shatt Al Arab (or Euphrates-Tigris) in

the Middle East (AS-74, 124%) and the Mae

Khlong in Thailand (AS-58, 130%). Flow

regulation does not exceed 100% in any LRS

in Europe or Australasia. A flow regulation

of 100% indicates that the entire discharge of

one year could be held back and released by

the dams in the river system.

The numbers of unaffected and strongly

affected LRSs are roughly equal (120 and 104,

respectively), whereas moderately affected

systems represent just 23%, or 68 of the 292

LRSs (Fig. 1). Of the 10 LRSs with highest

discharge, 6 are moderately affected and 4 are

strongly affected. The world_s two largest

discharges, the Amazonas-Orinoco and Congo,

are moderately affected, and the third largest

discharge, the Chang Jiang, is strongly affected

(table S1). The largest unaffected LRS is the
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Yukon (22nd highest VMAD). Strongly

affected systems constitute the majority (52%

or 41.2 � 106 km2) (Fig. 1) of total LRS

catchment area, despite contributing less water

per system (2326 m3 sj1) and per system

catchment area (396 � 103 km2) than moder-

ately affected LRSs. Among continents, the

highest number (40) of unaffected LRSs is in

North and Central America, whereas Austral-

asia contains the highest proportion (74%) of

unaffected systems. Europe has both the

smallest number (five) and smallest proportion

(12%) of unaffected LRSs (Fig. 2).

Fourteen unaffected or moderately af-

fected LRSs nearly meet fragmentation and

regulation criteria for higher impact classi-

fication (NA-14, 47, 48, 54, and 80; SA-28

and 32; EU-18, 29, and 33; and AS-1, 24,

35, and 36). Small increases in flow regu-

lation caused by irrigation could change

these classifications. Although many dams

provide water for irrigation, nonreturned

withdrawal from a river_s flow for irrigation

is a separate and additional form of flow

regulation to that caused by retention and

release of water by dams. To assess this, we

constructed an irrigation index representing

the area equipped for or under irrigation (30)

within each LRS per unit of water in the sys-

tem (table S1).

Strongly affected systems account for the

25 highest irrigation index values, 15 of which

lie in Asia, with the Haihe in China (AS-30)

scoring the highest (2194 km2 per annual km3

of discharge) (table S1). Of the five borderline

unaffected systems, index values only suggest

reclassification (to moderately affected) for the

Adour in France (EU-29). Of the nine

borderline moderately affected systems, index

values were high enough to suggest re-

classification (to strongly affected) for five

systems: B<o-B<o in Chile (SA-32), Kuban in

western Russia (EU-18), Agano-Gawa in

Japan (AS-24), and Min Jiang and Han Jiang

in China (AS-35 and 36, respectively).

Most of the unaffected LRSs are situated

in just four biomes (tundra; boreal forests;

tropical and subtropical moist broadleaf

forests; and tropical and subtropical grass-

lands, savannahs, and shrublands) (Fig. 3),

constituting small proportions of each biome.

Tundra, which is sparsely populated, relative-

ly flat, and thus unfavorable to dam construc-

tion, is the only biome in which LRS

catchment area (29% of total biome area) is

predominantly unaffected (73%). Even if

unassessed river systems are assumed to be

unaffected (a best-case scenario), the maxi-

mum proportion of unaffected biome area is

still G40% for each of boreal forests; tropical

and subtropical moist broadleaf forests; and

tropical and subtropical grasslands, savan-

nahs, and shrublands.

Catchment area of strongly affected LRSs

constitutes 950% of three biomes (temperate

Fig. 2. Total number of
systems, total water
discharge, and total ba-
sin area of strongly
affected, moderately
affected, or unaffected
within each continent’s
LRSs. Percentages may
not total 100% be-
cause of independent
rounding.

Fig. 1. Impact classification based on river channel fragmentation and
water flow regulation by dams on 292 of the world’s large river systems.
River systems are treated as units and are represented on the map by
their catchments. Numbers refer to the list of LRSs in table S1. Green,
yellow, and red indicate unimpacted, moderately impacted, and strongly

impacted catchments, respectively. White areas indicate land not covered
by LRSs. Systems excluded from the study for lack of data are shown in
gray. Diagrams at left show A, total number of LRSs; B, total VMAD of
LRSs; and C, total surface area of LRSs. NA, North and Central America;
SA, South America; AF, Africa; EU, Europe; AS, Asia; AU, Australasia.
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broadleaf and mixed forests; temperate grass-

lands, savannahs, and shrublands; and flooded

grasslands and savannahs). Within the catch-

ment area of LRSs, 82% is strongly affected in

deserts and xeric shrublands, and 99% in

Mediterranean forests, woodlands, and scrubs.

Flow regulation, implying reduced flooding

and less productive floodplains, may be

especially harmful in the dry and cold biomes

where species are particularly dependent on

the riparian resource (31, 32).

The eight LRSs that span seven or more

biomes are all moderately or strongly impacted

(SA-11; AS-1, 5, 20, 62, 65, and 73; and AF-6)

(table S1). Of the 37 LRSs that span five or

more biomes, only five remain unaffected

(Catatumbo, SA-4; Salween, AS-61; Rufiji,

AF-2; Mangoky AF-5; and the Chari, AF-24)

(table S1). In these biogeographically diverse

LRSs, the impacts of dams are more widespread

than those in less diverse systems, because more

ecotones are affected by fragmentation.

Moderately and strongly affected LRSs

already dominate several biomes, and those

biomes may become totally devoid of un-

affected river systems if this pattern persists in

the smaller basins and subbasins. Indeed,

previous results from the Nordic countries show

that the regional distribution of impact classes is

similar between LRSs and small- and medium-

sized river basins (23).

In the past century, dam construction has

coincided with economic development at the

national and regional scales (22). To examine

the current state of this relationship at the

basin scale, we calculated a per-discharge

gross LRS product (GLP) accounting for basin

population, associated national economies,

and VMAD (33). Results show that basin

impact increases with economic activity, and

average GLP of unaffected LRSs is 25 times

lower than that of both moderately and

strongly affected LRSs (Fig. 4). There are five

strongly affected LRSs with negligible GLPs

EG$1 million (U.S.) kmj3^ (table S1), all in

northern Canada. These systems lie in sparsely

populated regions (driving the low GLPs), and

dam benefits (hydropower) are exported to

other basins (34).

There are 46 LRSs for which large dams

are planned or under construction, with

anywhere from 1 to 49 new dams per basin

(35). Forty of these LRSs are in non-OECD

(Organization for Economic Cooperation and

Development) member nations, indicating

that future dam development does not depend

on strong national economies. Almost half of

the new dams are located on just four rivers,

i.e., 49 on the Chang Jiang (AS-32), 29 on

the Rio de la Plata (SA-22), 26 on the Shatt

Al Arab (AS-74), and 25 on the Ganges-

Brahmaputra (AS-65) (35). New dams are

also planned for several unaffected LRSs,

including the Jequitinhonha (SA-16), C"
(AS-40), Agusan (AS-46), Rajang (AS-51),

and Salween (AS-61). For each impact class,

LRSs with weak economies (36) experience

greater per-discharge population pressure

(37) than economically strong LRSs, con-

tributing to greater demand for dam con-

struction among poorer basins. As in northern

Canada, interbasin exchange of dam benefits

will continue to influence decisions about dam

construction. For example, more than 13 dams

are planned or proposed for the currently un-

affected Salween, the most imminent of which

(the Tasang on the main stem) aims to provide

international and interbasin benefits (38).

As noted, we excluded from our analysis

most systems in Indonesia and several in

Malaysia. This is unfortunate, because the

region is one of the world_s top three hotspots

for biodiversity (39). Additionally, our defini-

tion of LRS depends solely on discharge,

neglecting spatially large river systems in arid

regions that carry little water on an annual basis

(e.g., the Rio Grande in North America). Our

classification features two limitations. First,

it does not address within-basin variations in

impacts, which could be substantial in large

basins. For example, the moderately affected

Mackenzie and Amazonas-Orinoco systems

include extensive, virtually pristine areas as

well as strongly affected areas. Second, our

data often represent minima. We stopped gath-

ering reservoir data once a system reached

classification as strongly affected (although

any outstanding dams are likely few and

small).

As demands on water resources increase,

our data can help address the ecological risks

associated with further impacts on LRSs. For

example, in free-flowing rivers, biodiversity

can persist because organism dispersal can be

effective in both upstream and downstream

directions (40, 41) and because many orga-

nisms are likely to adapt to climate change by

concomitant shifts in distributions. But in

fragmented and regulated rivers, such disper-

sal can be strongly limited (10). These facts

need to be accounted for in global planning

for sustainable river management.
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Apical membrane antigen 1 from Plasmodium is a leading malaria vaccine can-
didate. The protein is essential for host-cell invasion, but its molecular function is
unknown. The crystal structure of the three domains comprising the ectoplasmic
region of the antigen from P. vivax, solved at 1.8 angstrom resolution, shows that
domains I and II belong to the PAN motif, which defines a superfamily of protein
folds implicated in receptor binding. We also mapped the epitope of an invasion-
inhibitory monoclonal antibody specific for the P. falciparum ortholog and
modeled this to the structure. The location of the epitope and current knowledge
on structure-function correlations for PAN domains together suggest a receptor-
binding role during invasion in which domain II plays a critical part. These results
are likely to aid vaccine and drug design.

Apical membrane antigen 1 (AMA1) is cur-

rently in clinical trials as a vaccine against

P. falciparum, the species causing the most

serious forms of malaria in humans. AMA1

is present in all Plasmodium species ex-

amined (1), and orthologs exist in other

Apicomplexa, including Toxoplasma (2) and

Babesia (3). Although little is known about

its molecular function, genetic evidence in-

dicates a role in maintaining parasite growth

during the blood-stage cycle (4). Antibodies

raised against AMA1 can inhibit erythrocyte

invasion and protect against the disease in

animal-model systems of malaria (5–9). Fur-

thermore, invasion-inhibitory antibodies to

AMA1 have been affinity-purified from hu-

man sera of donors from malaria-endemic

regions (10). AMA1 is stored in the micro-

neme organelles after synthesis and is trans-

located to the parasite surface just before or
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