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Superposition is one of the most distinctive features of quantum
theory and has been demonstrated in numerous single-particle
interference experiments1–4. Quantum entanglement5, the coher-
ent superposition of states in multi-particle systems, yields more
complex phenomena6,7. One important type of multi-particle
experiment uses path-entangled number states, which exhibit
pure higher-order interference and the potential for applications
in metrology and imaging8; these include quantum interferome-
try and spectroscopy with phase sensitivity at the Heisenberg
limit9–12, or quantum lithography beyond the classical diffraction
limit13. It has been generally understood14 that in optical
implementations of such schemes, lower-order interference
effects always decrease the overall performance at higher particle
numbers. Such experiments have therefore been limited to two
photons15–18. Here we overcome this limitation, demonstrating a
four-photon interferometer based on linear optics. We observe
interference fringes with a periodicity of one-quarter of the
single-photon wavelength, confirming the presence of a four-
particle mode-entangled state. We anticipate that this scheme
should be extendable to arbitrary photon numbers, holding
promise for realizable applications with entanglement-enhanced
performance.

To see the origin of multi-particle interference more clearly,
consider first a simple analogue to Young’s double-slit experiment,
that is, a Mach–Zehnder (MZ) interferometer (Fig. 1a). There,
single-photon interference occurs owing to the spatial separation of
two modes of propagation a1 and b1 for a single particle entering
the interferometer at the first beamsplitter. Variation of the path
length induces a phase shift DJ and thus gives rise to detection
probabilities Pa2 / 1þ cosDJ and Pb2 / 12 cosDJ in each of the
two output modes a2 and b2 behind the exit beamsplitter. Two-
photon interference occurs when a1 and b1 are the modes of
propagation for a state of two indistinguishable photons, that is, a
biphoton state jWl¼ 1ffiffi

2
p ðj2la1j0lb1 þ ei2DJj0la1j2lb1Þ: It represents

a path-entangled two-photon state, which exhibits pure two-
particle interference at the output beamsplitter. The probability to
find two photons in either mode a2 or b2 then oscillates with
Pa2;a2 / 1þ cosð2DJÞ and Pb2;b2 / 12 cosð2DJÞ; respectively, while
the single-photon detection probabilities Pa2 and P b2 remain
constant.

In the generalized case of an N-particle interferometer, the N
photons will be in a superposition of being in either mode a1 or b1,
resulting in

jWl¼
1ffiffiffi
2

p ðjNla1j0lb1 þ eiNDJj0la1jNlb1Þ ð1Þ

In other words, the paths are entangled in photon number. Here
jNla1ðjNlb1Þ indicates the N-particle Fock state in spatial mode a1
(b1), respectively, and N ¼ 0 represents an empty mode. The phase
modulation NDJ increases linearly with the particle number N,
which is the origin of all entanglement-enhanced interferometric
schemes. In particular, the N-photon detection probability in each
of the interferometer outputs would vary as PN / 1^ cosðNDJÞ: It

has therefore been suggested19 that an effective de Broglie wave-
length l/N could be attributed to the quantum state. This resembles
the case of a heavy massive molecule4 consisting of N atoms; though
here the particles are in no way bound to each other.

In order to benefit best from such entanglement-enhanced
interferometric techniques, it is desirable to achieve experimentally
a high photon number N for states of the form of equation (1). The
special case of N ¼ 2 was realized both in the original Young’s
double-slit geometry (by using collinear production of biphoton
states via parametric down conversion20), and in the Mach–Zehnder
configuration (by using two-photon interference to suppress
unwanted single-photon contributions15–18). It is commonly
believed that the realization for states with N . 2 requires the use
of nonlinear gates21 or N additional ‘ancilla’ detectors with single-
photon resolution22. Unfortunately, neither of these schemes is
feasible with current technologies. We demonstrate how to over-
come this limitation, giving a specific example of pure four-photon
interferometry.

Our proposal is based on separating photon pairs into different
pairs of modes, and using two-particle interferometry rather than
distinguishing photon numbers or using nonlinear beamsplitters.
To achieve this goal, we exploit type-II spontaneous parametric
down-conversion (SPDC)23. An ultraviolet (UV) pulse passes
through a b-barium-borate crystal, probabilistically emitting pairs
of energy-degenerate polarization-entangled photons into the
spatial modes a1 and a2 (Fig. 1b). The UV pump beam is reflected
back at a mirror, and can thus also emit entangled photon pairs into
the spatial modes b1 and b2. The set-up is aligned to generate the
following maximally entangled biphoton state

jFþl¼
1ffiffiffi
2

p ðjHl1jHl2 þ jVl1jVl2Þ ð2Þ

for each of the pairs emitted into the pairs of modes a1–a2 or b1–b2.
Here H (V) indicates horizontal (vertical) polarization of the
photon.

We first consider the case where only one pair of entangled
photons is emitted on a double pass of the UV pulse through the
crystal. There are two probability amplitudes that will contribute to
the emerging two-photon state; the pair is emitted either into the
pair of modes a1–a2 or into the pair of modes b1–b2. We then
coherently combine the two pairs of modes at the two polarizing
beamsplitters (PBSs). As the PBS transmits horizontally polarized
light and reflects vertically polarized light, conditional on detecting
one photon in each of the output ports, for example, a3 and a4, the
biphoton state will be

jFla3a4 ¼
1ffiffiffi
2

p ðjHla3jHla4 þ ei2DJjVla3jVla4Þ ð3Þ

where again DJ is the phase modulation of a single photon15,24. The
phase DJ can be modulated by changing the position of the pump
mirror. Two-photon interference fringes may now be observed by
performing a projection measurement in the modes a3 and a4 into
the linear polarization basis j^ l¼ ð1=

ffiffiffi
2

p
ÞðjHl^ jVlÞ: Specifically,

the probability of detecting a twofold coincidence j þ la3j2 la4 is
proportional to Pa3;a4 / 12 cosð2DJÞ: These correlations are
already a signature of non-locality25,26 of the two-photon state
(Fig. 2b).

We now explain how our scheme can be generalized to four
photons and even higher photon numbers. Consider the case where
four photons are emitted on a double pass of the pump beam
through the crystal. There are two possibilities that will contribute
to an overall four-photon state: first, a double-pair is emitted on
either pass of the pump beam, that is, two photon pairs are emitted
into a superposition of being in the same pair of modes a1–a2 or
b1–b2, respectively, or, second, one pair of photons is emitted on
each pass of the pump beam, that is, into each of the modes a1–a2
and b1–b2.
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We first study the double-pair emission case. In our experiment,
the spectral filtering in the photon detection is much narrower than
the linewidth of the UV-pump, so the two pairs cannot be treated as
independent but have to be described as one four-photon27. In other
words, the double-pair emission results in a four-photon propagat-
ing within the mode pair a1–a2 or b1–b2. A fourfold coincidence
after the two PBS, that is, detection of a single photon in each of the
output ports a3, a4, b3 and b4, will either result from a
jHla3jHla4jVlb3jVlb4 contribution, if the double pair is in a1–a2,
or from a jVla3jVla4jHlb3jHlb4 contribution, if the double pair is in
b1–b2. Temporal overlapping of both pairs of modes at the two

PBS results in jHla3jHla4jVlb3jVlb4 þ ei4DJjVla3jVla4jHlb3jHlb4; a
coherent superposition of forward and backward emission at the
same time, where all the four backward emitted photons are phase
shifted by the pump mirror. Introducing a path difference induces a
phase shift DJ, and further performing a polarization measurement
in the j^ l basis to achieve indistinguishability results in inter-
ference fringes with one-quarter of the single-photon wavelength.
Note again that it originates from an intrinsic four-photon effect
and does not involve lower-order interference. We will now show
how this four-photon effect was isolated in the experiment without
unwanted lower-order interference.

With the same probability as the desired double-pair emission,
one photon pair is emitted into each of the mode pairs a1–a2 and
b1–b2 by one pulse. The resulting coherent superposition
ei2DJðjHla3jHla4jHlb3jHlb4 þ jVla3jVla4jVlb3jVlb4Þ has a fixed
relative phase28 which is independent of the position of the pump
mirror. Also in contrast to the above four-photon emission, only
two-photon interference contributes to these events. These contri-
butions can be erased by performing a proper projection measure-
ment of the four output modes a3, b3, a4 and b4 into the j^ l bases;
then the number of j þ l projections is different from the number of
j2 l projections, say j þ la3j2 la4j þ lb3j þ lb4: The overall four-
photon amplitude originating from one photon in each mode then
becomes ei2DJðj þ la3j2la4j þ lb3j þ lb4 2 j þ la3j2la4j þ lb3j þ lb4Þ
and thus vanishes owing to destructive interference, a four-photon
equivalent to a Hong-Ou-Mandel interference29.

Figure 2 compares the resulting pure four-photon interference
effect (Fig. 2c) with the well-known two-photon interference (Fig. 2b)
and the single-photon interference (Fig. 2a) obtained with the same
set-up. The data reveal a reduction of the oscillation wavelength, from
823 ^ 46 nm for the single-photon case, via 395 ^ 16 nm for the
two-photon case, to 194 ^ 9 nm for the four-photon case. The result
demonstrates that one has to treat the four-photon state as one
object of the form jwl¼ 1ffiffi

2
p ðj4la1;a2j0lb1;b2 þ ei4DJj0la1;a2j4lb1;b2Þ;

which is similar to a ‘NOON’-state30. Our four-photon state
has the additional interesting property that it is non-local, as it is a
superposition of four photons either in mode a1 and a2 or b1 and b2.

Nevertheless there is room for an ambiguous interpretation of the
observed four-photon oscillations via two-photon interference

Figure 1 One-, two- and four-photon interferometry. a, In a two-mode Mach–Zehnder

interferometer, the phase is changed by varying the path length via the position of a

mirror. Single-photon interference occurs owing to the spatial separation of two possible

modes of propagation a1 and b1 for a single particle entering the interferometer at the first

beamsplitter (BS). Two-photon interference can be achieved when a1 and b1 are the two

possible modes of propagation for a biphoton state. b, In our experiment, the required

four-photon state is produced by type-II spontaneous parametric down-conversion

(SPDC). A 200 fs pulse at a central UV wavelength of 395 nm and at a repetition rate of

76 MHz passes through a b-barium-borate (BBO) crystal, probabilistically emitting pairs of

energy-degenerate polarization-entangled photons at 790 nm into the spatial modes a1

and a2. The UV pump beam is reflected back at a mirror, and might thus emit a second

pair into the spatial modes b1 and b2. The probability of single-pair creation is of the order

of p (in our set-up, p < 1022–1023), while the probability of creating two pairs is

proportional to p 2. Filters (F) of 3 nm bandwidth coupling into single-mode fibres in front

of each detector enable good temporal and spatial overlap of the photon wavepackets at

the polarizing beamsplitters (PBSs). The UV pump is reflected by the pump mirror PM,

which is mounted on a computer-controlled translation stage. By scanning the position of

PM with a step size of 1 mm and performing fine adjustment of the position of M, we

achieved the temporal overlap of modes a1 and b1, and of modes a2 and b2. An

additional piezo translation stage is used to move the pump mirror PM and to perform a

change of the phase between four photons emitted into modes a1 and a2 relative to the

four photons emitted into b1 and b2. The detection of the spatially separated four-photon

coincidences behind a 458 polarizer (Pol) while varying the position of PM leads to the

observed interference fringes.
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effects. However, this loophole can be definitely closed by the
following experiment, in which we observe the desired four-photon
interference without any signature of lower-order interference
effects. If the assumption that the fourfold coincidence pattern of
Fig. 2 could be reduced to two-photon interference were correct,

then a suppression of the two-photon amplitudes should also lead
to a suppression of the fourfold oscillation. The experimental data
clearly rules out this scenario (Fig. 3). In this experiment, the initial
states are prepared such that a forward emitted pair is in state jFþl
as before, while a backward emitted pair is in the state jW2l¼
1ffiffi
2

p ðjHlb1jVlb2 2 jVlb1jHlb2Þ: A superposition of these states can
never result in any two-photon interference owing to the
bilateral parity check24 performed by the two PBSs: for the
jFþl-Bell state both photons are always transmitted or reflected,
whereas for the jW2l-Bell state one photon is always transmitted
and one is reflected, such that no interfering amplitudes for
twofold detection events can build up. Only a double-pair
emission on each side, where a four-photon is emitted either
forwards or backwards, contributes to the four-photon state
after the PBS and gives rise to pure four-photon interference. In
both cases of a “j þ la3j2 la4j þ lb3j þ lb4”-projection or a
“j þ la3j þ la4j þ lb3j þ lb4”-projection, all possible two-photon
coincidence detections do not show any oscillations (Fig. 3a),
while the four-photon coincidence rate oscillates with Pa3;a4;b3;b4 /
12 cosð4DJÞ or Pa3;a4;b3;b4 / 1þ cosð4DJÞ; respectively, that is, a
fourfold reduction in wavelength (Fig. 3b). This complete absence
of two-photon interference effects underlines the true four-photon
character of the observed interference. Note that this is in contrast to
the first case, in which a projection onto j þ la3j þ la4j þ lb3j þ lb4

would not eliminate the two-photon interference and thus does not

Figure 2 Experimental demonstration of pure one-, two- and four- photon interference.

The two- and four- photon interference is recorded simultaneously, whereas for the one-

photon interferometry the pulsed laser has been switched from mode-locking to

continuous-wave (c.w.) mode. a, The single photon rate in mode a3 after performing a

projection measurement in the linear polarization basis j^ l¼ ð1=
ffiffiffi
2

p
ÞðjHl^ jV lÞ: For

this interference pattern, the pump laser is used in the c.w. mode at 790 nm (instead of

the mode-locked frequency-doubled mode at 395 nm). A Mach–Zehnder configuration

for modes a1–b1 arises for light scattered from the BBO crystal when passing through the

crystal. By moving the pump mirror, interference fringes appear for single photons with a

central wavelength of 790 nm, which corresponds to the down-converted photons. Note

that, owing to the back reflection of the pump beam, the change in the optical path is twice

as large as in the position of the pump mirror. b, The two-photon coincidence rate

corresponding to the detection in mode a3 and a4 after projecting onto j þ la3j2 la4:

c, A demonstration of how performing a projection onto j þ la3j2 la4j þ lb3j þ lb4

results in pure four-photon interference owing to projection onto the (non-local) path-

entangled four-photon state jwl¼ 1ffiffi
2

p ðj4la1;a2j0lb1;b2 þ ei4DJj0la1;a2j4lb1;b2Þ: The

visibility of the observed four-photon oscillations, defined as V ¼ (I max 2 I min)/

(I max þ I min), is approximately 61%. The error bars in Figs 2 and 3 are defined as the

square root of the observed fourfold coincidence.

Figure 3 Pure four-photon interference without any two-photon interference. This can be

observed when different entangled input states are used in forward and backward

emission, specifically jFþla1;a2 and jW2lb1;b2: Owing to the bilateral parity action of the

PBS, only a four-photon emitted in a superposition of either forward or backward direction

can contribute to the overall state. a, No interference is obtained from any possible twofold

coincidence measurement P a3;a4 (open circles), P a4;b3 (filled triangles) and P a4;b4 (inset).

b, In the case of a j þ la3j þ la4j þ lb3j þ lb4-projection, pure four-photon oscillations

can be observed with detection probability P a3;a4;b3;b4 / 12 cosð4DJÞ: The

corresponding measured visibilities of the two-photon curves are approximately 4% for

P a3,a4, 19% for P a4,b3 and 7% for P a4,b4, which is clearly below the four-photon fringe

visibility of approximately 61%.
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result in the desired l/4 de Broglie wave effect31. In principle, this
can be extended to higher-order interference effects because,
obviously, when more than two double-pairs are emitted from the
crystal the suppression of all lower-order interferences can be
achieved by a proper projection analogous to the N ¼ 4 case.

The method that we use here allows the generation of four-
photon states and their subsequent utilization in pure four-particle
interferometry. The result clearly confirms the theoretical expec-
tation that the de Broglie wavelength of a four-photon state is one-
quarter that of a single photon, thus leading to the general rule
lðNÞ ¼ lð1Þ=N: This overcomes the resolution limit of state-of-
the-art two-particle interferometry, and opens new possibilities for
multi-particle interference in fundamental quantum experiments
and in applications such as quantum metrology. It is important to
note that, in principle, this scheme can be extended to higher
particle numbers if more spatial modes are involved. The actual
limitation due to low count rates may eventually be overcome with
the next generation of entangled photon sources and detectors. A
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Interference phenomena are ubiquitous in physics, often form-
ing the basis of demanding measurements. Examples include
Ramsey interferometry in atomic spectroscopy, X-ray diffraction
in crystallography and optical interferometry in gravitational-
wave studies1,2. It has been known for some time that the
quantum property of entanglement can be exploited to perform
super-sensitive measurements, for example in optical interfero-
metry or atomic spectroscopy3–7. The idea has been demonstrated
for an entangled state of two photons8, but for larger numbers of
particles it is difficult to create the necessary multiparticle
entangled states9–11. Here we demonstrate experimentally a
technique for producing a maximally entangled three-photon
state from initially non-entangled photons. The method can in
principle be applied to generate states of arbitrary photon
number, giving arbitrarily large improvement in measurement
resolution12–15. The method of state construction requires non-
unitary operations, which we perform using post-selected linear-
optics techniques similar to those used for linear-optics quantum
computing16–20.

Our goal is to create the state

jN :: 0la;b ;
1ffiffiffi
2

p jN;0la;b þ j0;Nla;b

� �
ð1Þ

which describes two modes a, b in a superposition of distinct Fock
states jna ¼ N; nb ¼ 0l and jna ¼ 0; nb ¼ Nl. This state figures
in several metrology proposals, including atomic frequency
measurements4, interferometry3,6,7, and matter-wave gyroscopes5.
In these proposals the particles occupying the modes are atoms or
photons.

The advantage for spectroscopy can be seen in this idealization:
we wish to measure a level splitting Hext ¼ ebab†b between modes b
and a using a fixed number of particles N in a fixed time T. We could
prepare N copies of the single-particle state ðj1;0la;b þ j0;1la;bÞ=

ffiffiffi
2

p

and allow them to evolve to the state jfl ; ðj1;0la;b þ
exp½if
j0;1la;bÞ=

ffiffiffi
2

p
; where f¼ ebaT=". Measurements of A1 ;

j0;1l k1;0j þ j1;0l k0;1j on this ensemble give kA1l¼ cosðfÞ
with phase uncertainty at the shot-noise limit, Df ¼ 1=

ffiffiffiffi
N

p
:

In contrast, under the same hamiltonian jN::0l evolves to
ðjN;0lþ exp½iNf
j0;NlÞ=

ffiffiffi
2

p
: If we measure the operator AN ;
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