
NXT-G Tips & Tricks

These are a collection of NXT-G tips & tricks written by Brian Davis. These are not

"official" tips, just a collection of his own thoughts and rules when he uses NXT-G V1.1

First Rule of NXT-G: Don't rush the editor. When you

are inserting a block between existing blocks, you can

click & drag it in to position so the 1x3 "shadow" shows

in the right place... but don't actually drop it until the

editor makes room for it. For reasons unknown, the

editor seems to get "lost" most often if you rush it, and

assume that it knows where all the drops, clicks, and

releases in an editing sequence were.

Second Rule of NXT-G (&, really, everything else on a computer): "Save Frequently, Save

Often ". Because you never know when something you did might pervert something that

was working before, or when the editor might crash. Don't save over working copies with

the same name, but save "new versions" of programs (& My Blocks!), so you can always

backup a step or three.

Third Rule of NXT-G: Use My Blocks. These save huge amounts of memory, promote

good coding, make things more readable, etc. About the only bad thing I have to say about

My Blocks is you can occasionally (OK, I'm the only one I know who's done this) get them

so they seem "broken" in the editor, but the compiler will still produce perfectly good code

from them; that looks bad but seem to work fine. As far as learning to program, I'm

beginning to think My Blocks promote reusable, self-contained code more than most

text-based languages do.

4) Switches look great in "flat" form - now get rid of

them. The "tabbed" form is both more useful (you can

wire in & out of it in tabbed view, and can have more

than two states) & more stable (possibly because it's

much closer to how NI does this in LabVIEW, while the

"flat" format may be a special adaptation for NXT-G

only).

4.1) When wiring within a tabbed Switch structure, the this needs a picture

wiring works fine in the "first" tabbed field (the "true"

field of a logical Switch, for example), but does funny

"straight wires to infinity" things in the other fields. You

can wire up things on the sequence beam behind a

Switch, and then select the entire thing (wires too) and

drag it in to make your life easier.

5) Don't use variables when a wire will do. I know every one of us from text-based

languages finds this hard to handle, but NXT-G handles wiring values forward better in

some cases than it does actual variables (among the problems: all variables are global, and

long variable names aren't visible).

6) When wiring, first give yourself plenty of space in

Switches & Loops (the old "crowbar & pin" routine). Do

it once, and you don't have to do it again. Then use wires

in ways that make sense to you (not just "hook up two

points"). Clicking at an intermediate position allows you

to "Tack" the wire to that point, and bend it another way

along the next segment.

7) Try to resist the multiplication of sequences

(tasks) every time you think you need to do "something

else". First, that slows things down and often isn't

needed.

Second, while NXT-G is pretty good on editing the first

sequence... it's much poorer on the second, third, etc.

Likewise splitting off a sequence from mid-sequence can

work great if it's the last thing you do, but if you

add/subtract any blocks ahead of that split later... things

can get decidedly odd. Avoid if at all possible.

8) Debug with blocks that make your life easier, not harder. Below are two My Blocks that

end up in nearly every program I write, because they're easy to use, and therefore make

debugging insanely easy as well, PrintNumber and the block it calls, Printline

Note these are not complex

or difficult My Blocks - in

fact, you might think why

bother at all. But with

PrintLin

e.rbt

(202.87

k)

PrintNumber.rbt (181.86k)

http://www.teamhassenplug.org/NXT/NXTGTips/PrintLine.rbt
http://www.teamhassenplug.org/NXT/NXTGTips/PrintLine.rbt
http://www.teamhassenplug.org/NXT/NXTGTips/PrintLine.rbt
http://www.teamhassenplug.org/NXT/NXTGTips/PrintLine.rbt
http://www.teamhassenplug.org/NXT/NXTGTips/PrintNumber.rbt

PrintNumber, I can drop a

single block and that's all I

need to get labeled,

formatted numerical output

on the LCD. Nothing

earth-shattering... but it

makes debugging easy

instead of a task. And by

having one My Block that

calls another, I can make

sure that these blocks only

exist in memory ONCE, and

all my simple screen prints

are done through them.

Saves memory, and the only

cost is that I can't have two

parallel sequences drawing

to the LCD at once (and if

that happens, actually, one

just waits for the other, so 9

times out of 10 you don't

even notice it).

Simple Sound blocks that "beep" at a different tone are another good example of debugging.

9) Option-dragging (on the Mac, Ctrl-dragging on the PC) an existing block (or series of

blocks) clones them, with all their internal settings preserved. In other words once you have

that "Motor B" block on the programming field, you need never go to the pallet to drop a

new one and reconfigure it yet again, just "clone-drag" an existing block.

10) Have I mentioned "Wait for the Editor" yet? And if you get tired of the editor taking so

blasted long to shift things, and all the icons in the map view in the lower right-hand corner

look like single pixels... see Rule Three (but before you do it, use Rule Two again).

11) The great Copy-Paste issue. I don't know why, but I've not had good luck with this.

However, Option-drag (Ctrl-drag) has been just great. So the result is the only time I

personally use a Copy-paste type edit is when I'm taking something from one sheet and

trying to get it into a second, different sheet.

12) Oh, and for designing those My Block icons, you can drop multiple overlapping icons,

as well as resize them. Deleting an icon however had me stumped for a very long time. On

the Mac, you need to select the icon you want to remove, and hit fn-delete ("function

delete"). Actually still the only use for the "fn" key on my computer I've ever needed. (just

"Delete" on the PC)

13) Incomplete sequence beams through a Loop & other odd structures. Ever had a Switch

in side a Loop, and for some reason the sequence from the end of the Switch doesn't reach

the tail of the Loop? This is a sign that the editor is starting to miss things. One way to fix it

is to grab and pull free the entire Switch, and then replace it (being careful to follow Rule

One above), and you'll find the editor has "found" the connection again. Likewise

sometimes deleting the last block out of a Loop (particularly a Loop set to trigger on a

sensor) will result in a Loop with no internal "space" to seed block into. If that's the case,

delete the loop and drop a new one.

14) Undo for Mental Health: In general, if something looks wrong... assume it is. Either

re-do it (following Rule One), or use the other fantastic hidden tool at your disposal,

"undo" (either from the edit menu, or the keyboard shortcut). This seems to work really

well, even undoing the polite "rewiring" NXT-G sometimes (often) tries to do for you.

15) You can't wire

into a Wait (to

have the program

set a condition that

wasn't know at

compile time) or a

Switch... but you

can always use

Compare Logic

blocks to come up

with a condition,

and set the Switch

to select on

logical, or wire a

value into a Loop

that does some

internal checking

to produce a

logical that

controls the Loop.

Honestly, I think

the default

dropped state for

the Loop and

Switch should be

"control on

logical", as this is

such a useful

concept... and

avoids some of the

issues that crop up

in #13 , above.

16) Clipping

wires: selecting a

wire and hitting

delete not only

removes it, but

every wire

attached to it, not

just annoying but

it can make you

loose track of

where the wires

were coming from

/ going to. But if

you click on the

downstream

(output) end of a

wire, only that

little branch is

removed,

preserving the rest

of a

multiply-branchin

g wire. Oh, and

while we're

discussing wires

(again), if you

have a wire with a

"bend" in it, but

it's not the way

you want it ("up

and over" when

what you need is

"over & up"), just

tap the space bar.

17) When no block is selected, the "1", "2", & "3" keys will select the pallet you want

forward. Also the "tab" key cycles through the tools.

18) If possible, don't mess with the directory structure. NXT-G is really good about finding

things (My Blocks, for instance) that have been moved... but not always, and searching

takes time, especially when you open a program.

NXT-G Blocks

This is a collection of blocks people have made for NXT-G , using NI's LabVIEW

NXT Toolkit. The blocks will load directly into the Mindstorms software, once the

Dynamic Block Update is installed. (only needed for NXT-G V1.0)

Advanced Display Image block

This block uses some very interesting and not well documented features of .ric files, by

allowing users to pass parameters to the image. This block is limited to five

parameters. The zip includes meter.ric, that works like a volt-meter.

To create an advanced ric file, use Andreas Dreier's RIC Editor

Also useful: Advanced Display Text Block by Guy Ziv (thanks for showing how some

of the stuff is done)

http://www.teamhassenplug.org/NXT/AdvancedDisplayImage.zip�
http://www.ni.com/academic/mindstorms/
http://www.ni.com/academic/mindstorms/
http://mindstorms.lego.com/support/updates/
http://www.teamhassenplug.org/NXT/AdvancedDisplayImage.zip
http://ric.dreier-privat.de/Docu/index_eng.htm
http://nxtasy.org/2008/09/20/advanced-display-text-nxt-g-block/

Line Following block

This block should be placed in a loop, and will cause drive the motors at the speed

specified, so the robot can follow the edge of a line, with a single light sensor.

My tests show this single block will execute about 2 to 3 times as fast as the same code in

NXT-G.

Bit Logic block

This block will do bitwise operations on numbers (And, Or, Xor, and Not).

I'd love to take credit for this, but the block actually come from Michael Gasperi. He

created this block, and asked me to take a look at it. I made some changes, and passed

it along to Brady (at National Instruments) who made some improvements before

sending it back, where I made even more improvements. Now, it's a pretty nice little

block, that's easy to use and looks good. (added 2/28/07)

Simple Array block v2.0

The array block is a repackaged sub-block. It will allow you to Clear the array, Add

values, Get and Replace values given the index.

Display Number block v2.0

I made this block as a debugging tool. It combines several blocks that (due to program

limitations) could not be compiled into a My Block. The block takes a line number, a

caption, and a number as input. The Caption and Number are displayed on the given

line on the screen.

http://www.teamhassenplug.org/NXT/LineFollowingBlock.zip�
http://www.teamhassenplug.org/NXT/BitLogic.zip�
http://www.teamhassenplug.org/NXT/SimpleArray.zip�
http://www.teamhassenplug.org/NXT/DisplayNumber.zip�
http://www.teamhassenplug.org/NXT/LineFollowingBlock.zip
http://www.teamhassenplug.org/NXT/BitLogic.zip
http://www.extremenxt.com/lego.htm
http://www.teamhassenplug.org/NXT/SimpleArray.zip
http://www.teamhassenplug.org/NXT/DisplayNumber.zip

 To add them to a pallet, simply create an empty file in the BlockRegistry directory, in

the pallet sub-directory, with the name of the block and a .txt extension.

Installing Interger Blocks (NXT-G 2.0)

When you load v1.0 or v1.1 programs in NXT-G v2.0, you'll see some blocks (like the

math block shown) have an (!) on them. These are interger versions of blocks that have

been updated in v2.0 to be floating point blocks. These blocks are installed with v2.0,

but do not appear on any pallet.

Ex: [LEGO MINDSTORMS directory]\engine\EditorVIs\BlockRegistry\Data\Numeric

Operations.txt

The list of available blocks is located in: [LEGO MINDSTORMS

directory]\engine\vi.lib\LEGO\Blocks\

If this doesn't make sense, you probably shouldn't do it.

Display Time block

This block is a combination of many other things. It's a modified version of the display

number block that will display the value of a timer in minutes and seconds. (added

2/28/07)

Acceleration Sensor block

This is the first block I made. The Configuration panel is not complete. It works with

one of the prototype acceleration sensors from Hi-Technic. It has outputs for X, Y &

Z. It can not be used as a loop block condition, because I didn't finish that part.

I've added some better pictures that Andy created and posted on NXTasy.org - Thanks

Andy

HiTechnic has a better version of this block

http://www.teamhassenplug.org/NXT/AdvancedDisplayImage.zip�
http://www.teamhassenplug.org/NXT/DisplayTime.zip�
http://www.teamhassenplug.org/NXT/Acceleration Sensor.zip�
http://www.teamhassenplug.org/NXT/DisplayTime.zip
http://www.teamhassenplug.org/NXT/Acceleration%20Sensor.zip
http://www.hitechnic.com/index.html?lang=en-us&target=d19.html

Tools

This is a very small collection of tools.

 Blank Image (1x1)

This .ric file contains a blank image that can be used to erase one pixel on the NXT

screen.

In NXT-G, this image will show as a couple small lines, however on the NXT, it will

only show as one blank pixel.

The image should be Saved to your Pictures directory...

[LEGO MINDSTORMS directory]\engine\Pictures\

 Blank Image (??x??)

This .ric file contains a blank image that can be used to erase parts of the NXT

screen. The default image is a 1x1 pixel.

Using "Advanced Display Image Block" (above) you can pass parameters to set the

width & height (as parameter 0 and parameter 1) up to 100 x 64.

In NXT-G, this image will show as a couple lines, however on the NXT, it will only

show as one blank pixel.

** this image may not work with the normal display block in NXT-G **

The image should be Saved to your Pictures directory...

[LEGO MINDSTORMS directory]\engine\Pictures\

http://www.teamhassenplug.org/NXT/BlankImage1x.ric
http://www.teamhassenplug.org/NXT/BlankImage.ric

NXT-G Add-Ins

The following are small programs that can be added to NXT-G. To install them,

simply save them into the project folder in the NXT-G directory, and they will appear

under the "tools" menu in NXT-G.

[LEGO MINDSTORMS directory]\engine\project\

As a rule, if you can't get them to work, don't use them. But, one of the best places to

ask questions is NXTasy.org

These are from various locations. Several came from Jason King. (Thanks Jason)

Config popup

Show configuration panel in a floating window. Good for mini-PCs, with a resolution

of ????x600. You must select the type of block in the window, before selecting the

block in the editor.

Download to file

Compile a program, and save it to a file. Useful when writing a program, without

having an NXT connected to the computer.

Modify User Settings

Change some setting for a pre-selected user.

Remove bad wires

Removes bad wires.

Save Screen Image

Will save the selected image from the screen. Good for saving Config panel images.

http://www.teamhassenplug.org/NXT/ConfigPopup.vi�
http://www.teamhassenplug.org/NXT/DownloadToFile.llb�
http://www.teamhassenplug.org/NXT/Modify_User_Settings.vi�
http://www.teamhassenplug.org/NXT/RemoveBadWires.llb�
http://www.teamhassenplug.org/NXT/SaveCurrentConfigImage.vi�
http://forums.nxtasy.org/
http://www.teamhassenplug.org/NXT/ConfigPopup.vi
http://www.teamhassenplug.org/NXT/DownloadToFile.llb
http://www.teamhassenplug.org/NXT/Modify_User_Settings.vi
http://www.teamhassenplug.org/NXT/RemoveBadWires.llb
http://www.teamhassenplug.org/NXT/SaveCurrentConfigImage.vi

Gears

This small assembly will

provide a solid method to gear

the drive axle up or down.

The output (wheel) can be

place on either side of the

motor, and the motor can be

inverted, depending on other

building constraints.

The L-shaped beam is required

to keep the gears close

together, so they will not slip,

or skip teeth.

Gear Ratios

http://www.teamhassenplug.org/NXT/Gears/SimpleGearingA.png�
http://www.teamhassenplug.org/NXT/Gears/SimpleGearingB.png�

This motor shaft will make 1

rotation, in the same time the

output shaft makes 1

Gears used: 16 tooth on

motor, 16 tooth on output

Gear Ratio: 1:1

Power: Same as motor

Speed: Same as motor

This motor shaft will make 3

rotations, in the same time the

output shaft makes 1

Gears used: 8 tooth on motor,

24 tooth on output

Gear Ratio: 3:1

Power: 3x motor

Speed: 1/3 x motor (slower)

This motor shaft will make 5

rotations, in the same time the

output shaft makes 3

Gears used: 12 tooth on

motor, 20 tooth on output

Gear Ratio: 5:3

Power: 5/3x motor

Speed: 3/5x motor (slower)

http://www.teamhassenplug.org/NXT/Gears/SimpleGearing11.png�
http://www.teamhassenplug.org/NXT/Gears/SimpleGearing13.png�
http://www.teamhassenplug.org/NXT/Gears/SimpleGearing25.png�

This motor shaft will make 3

rotations, in the same time the

output shaft makes 5

Gears used: 20 tooth on

motor, 12 tooth on output

Gear Ratio: 3:5

Power: 3/5x motor

Speed: 5/3x motor (faster)

This motor shaft will make 1

rotations, in the same time the

output shaft makes 3

Gears used: 24 tooth on motor, 8

tooth on output

Gear Ratio: 1:3

Power: 1/3x motor

Speed: 3x motor (faster)

NXT-G "Unlimited" Move

block does not work.

Q: I have an "Unlimited" move block in my NXT-G program. The motor(s) run for a few

seconds, then stop. WHY?

This question comes up all the time. It's not a bug in the software, hardware, or anything

else. In fact, the software is doing exactly what it should.

It's very common for someone to write a program like this:

http://www.teamhassenplug.org/NXT/Gears/SimpleGearing52.png�
http://www.teamhassenplug.org/NXT/Gears/SimpleGearing31.png�

...or this:

...and, expect the motors to run forever.

However, the software has a nice feature where it will stop the motors when the program

ends . And, very shortly after executing either of the above sequences, THE PROGRAM

ENDS, at which point the motors are automatically stopped.

SOLUTION:

Add something to the end of the program, so it will not stop...

Beginning Datalogging with the LEGO MINDSTORMS NXT --- Brian Davis

Preamble – Why I Bother.

On several occasions, people have asked me to help them with datalogging, so I

thought I’d put this little guide together and put it on-line for the community. I’m

choosing here to use NXT-G, because it’s the environment that most people have

access to for the LEGO NXT microcontroller (and one I have some experience with),

but the ideas here are much more general. If you use a different language (RobotC,

pbLua, NXC, etc.) or even a different platform (BASIC microstamp, RCX, etc.) many

of the ideas are the same, just the implementation changes. And some of these

languages offer advantages over NXT-G in speed or data manipulation as well, so

please use whatever you choose

On a more personal note, I’m doing this because it’s fun to explore the world

around me, and I’ve found datalogging with the LEGO NXT amazingly easy (easy

enough for a grade school student) yet powerful (enough that I’ve used it for

high-altitude research on the edge of space). With a handful of relatively cheap

sensors and the NXT brick, there are an almost unlimited number of things I can

explore and learn – limited primarily by my imagination, not my pocketbook, and I

can re-use the same equipment again & again, and know that others can repeat these

investigations, without access to even a high-school science lab… just what they can

get at a toy store and an on-line retailer or two.

What is Datalogging

The basic idea of datalogging is to run an experiment, but have a computer do the

tedious data recording for you. For instance, if you wanted to know how the

temperature changes during the course of an entire day, you could sit by a

thermometer, carefully recording the temperature every five minutes on a sheet of

paper, and then graph the results later… but it would be a huge amount of work. And

in some cases you might want to learn about the conditions somewhere dangerous or

inaccessible (does the light really go out in the refrigerator when you close the door?),

or figure out what’s happening in a process that’s too fast to manually record (how

fast does an incandescent light bulb turn on?). In all these cases you could use a

microcontroller like the NXT to automate the process. In fact there are a number of

commercial dataloggers available, for natural or industrial environments, but they

tend to be either very specific (recording only a single specific sensor or two) or

rather expensive (several hundred to several thousands of dollars). With the NXT, it’s

flexible, relatively inexpensive, and very common. There are a large number of

simple sensors commercially available, and many books and websites can show you

how to make your own custom sensors that are fairly easy to interface.

Some examples in the “real world” are monitoring the temperature & humidity of

a museum showcase, or the water level in a river during a rainstorm. Dataloggers have

also been used to monitor the accelerations experienced on roller coasters (an

instrumented “test dummy” is sent through the ride before a human generally is), the

eruption period of geysers in Yellowstone National Park (by recording the

temperature of the runoff from the geyser), or the accelerations and gas consumption

of a truck during its cross-country drive. Perhaps one of the best-known uses of

dataloggers is an airplane’s “black box” recorder. This is essentially a datalogger for

all the critical systems of the plane: the positions of the control surfaces, airspeed,

accelerations, and often many other sensors. All this can be used to try to reconstruct

what happened during a flight (a variation on this was a datalogging device present on

the Space Shuttle Columbia, that provided a huge number of measurements about the

disaster when it was found, largely intact, on the ground).

Beginning Datalogging

A simple example of datalogging would be studying the light level in a room over

a period of time. For instance, sometimes when you first turn on a florescent light it

starts out slightly dim, and then gradually brightens over time. You can see this, but to

determine how long it takes to reach “full brightness”, or how much it actually

increases in brightness during the first few minutes is tougher to put a number on –

and an easy, common thing to practice datalogging

If you were to do this “by hand”, you could just write down the measurement

reported by the light sensor every second (or faster, if you could), and after a few

minutes or so stop and graph the resulting data. The NXT can do the same thing, but

instead it writes the information into a file in its memory. So we want a program that

just Loops constantly (or for as long as we want it), reading the value of the light

sensor and wiring that result into a File Access block. Here’s a program that reads the

ambient light value from a light sensor once every second, and writes that result into a

file named “DLog.txt”:

onfigured to not generate light

(uncheck the “Function”

checkbox) and the File Access

block is set to Write a number

(not text) with a file name of “DLog”

ink to Logger1.rbt}

oop is

p,

rom the list and

clicking the “upload” button, NXT-G will transfer a copy of this file to your computer.

Fig 1-1: a minimal datalogging

program. The Light Sensor block

is c

{L

Run this program in a dark room, turning on the lights after 10 seconds or so, with

the light sensor pointed towards the lights. Let it run for about a minute, keeping the

sensor stationary, stopping the program by hitting the “Cancel” button, (as the L

set to run forever, that’s the only way to have this program halt). After running this

program, connect the NXT to the computer and look at the memory of the brick using

NXT-G. If you select “other” from the bar chart on the left, a list of files will pop u

including the newly-created “DLog.txt”. By selecting this file f

If you open this file in a word-processing program, you’ll see a series of numbers, and

if you open them in a spreadsheet program, you ca

exactly what the sensor reported each time it was r

 a

ph of the data. Each

bar represents the light sensor

reading for that second of the

program run

e

t

We

t reading with the light sensor

reading (separated by a comma) on each line. To do that we need to convert both

num c

,

combined into one text string

(in the third red block; the middle “b” field has a single comma entered into it in the

configuration pane), and the result wired into the ‘text’ plug of the File Access block.

Make sure the File Access block is now set to ‘Text’.

n graph these numbers and see

ecorded.

Fig 1-2: the series of numbers

written to the “DLog” file, and

simple bar gra

That’s the idea, but there is a lot of room for improvement. First it would be nic

if the NXT also told us when it took the measurement, so we don’t have to figure i

out later and remember exactly what the interval was that we programmed into it.

could do that by reading a Timer, and combining tha

omma between them before

Fig 1-3: the same program

with a Timer block added, and

the output of both blocks

converted to text (in the first

two red blocks) and then

bers to pieces of text, and combine them with a

writing them to the file, but that’s not too difficult:

And since we have all that inform

ight as well display it on t

“seeing”:

ation streaming into the NXTs memory, we

m h it is

Fig 1-4: the same text that is sent to the File Access

block is wired into a Display block (set to display text)

tart to close

and delete any file with the name we’re going to be using (starting with a clean slate),

 close that file when the program ends (the

o

with the “DLog”

filename, to close,

delete, and finally

close the finished file.

e LCD so we know the program is running, and what

If we ran the original program a second time, we’d find that the new data just gets

piled behind the old data. So for the 2nd version, put in two blocks at the s

and just to keep things neat a third block to

NXT should do this for us when the program ends, but it’s a g od habit):

Fig 1-5: some File

Access blocks, all

And since the NXT is doing all the work for us, we might as well measure the

light level much more frequently, so we’ll change the Wait block to only pause for 2

milliseconds, or 0.02 sec

0

onds between measurements (that’s a lot more measurements,

but hey, the computer is doing all the work), and while we’re at it change the Loop so

it exits when we hit the right arrow button (instead of Loop forever). The resulting

program looks like this:

Fig 1-6: an entire datalogging program, stopped by the right arrow key

ny

ou

 the time reading

(usually called a “timestamp”), and the second all the corresponding light sensor

readings. Graphing these as an X-Y graph (using, for instance, the graph wizard in

Excel), we’ve got a detailed record of “what the light sensor saw”:

{Link to Logger2.rbt}

Run this program again in a dark room (preferably one with a “cold” florescent

light that hasn’t warmed up recently), then connect to the NXT, select the file

“DLog.txt”, and uploaded it to the computer. Now open the DLog.txt file on the

computer with a spreadsheet (I use Excel, but almost anything should work). Ma

spreadsheets will automatically import this sort of file as “comma separated values”,

but if not this can be forced (changing the extension to “.cvs” will often work, or y

can specifically configure how the data is imported in a series of dialog boxes in

Excel, for instance. The result is two columns of data, the first being

Fig 1-7: A high-resolution record of the light turning on

 n

th ps, the seem to be about 28

 (and on rare occasions, there seem to be even

ple waiting for 20

e Loop as well (such as sensor reading,

form tion of the Loop actually takes longer than

just the time delay set on a simple Wait block. What we could do is replace the fixed

Wait block with an inner Loop that only finishes when a 2nd timer exceeds the limit

we set (say, again, 20 ms), and then right after that resets the 2nd timer to begin that

“co

n

That looks great. For instance, I can

brighter, and see just how fast the lights

First if I look at the difference between

milliseconds, not 20 like we specified

longer pauses). The reason for that is sim

ms, there are other things going on in th

ow clearly see the lights getting slowly

turn on. But there are still a few problems.

e timestam

: while the Wait block is

atting text, file writing), so one itera

untdown” for when to do the next reading:

Fig 1-8: a Loop until timer #2 is greater tha

0.02 seconds, followed by a block to reset

timer #2

{Link to Logger3.rbt}

That works much better (the normal interval between records is now about 21

milliseconds, close enough). But looking at the data, on rare occasions the timing

betw

”,

ady

 you want to log – and keeping the NXT awake and

alive that long. The NXT is usually set up to automatically turn itself off if a button

am

off a r an hour, you’ll

about 10 minutes of data in the file. There

are two solutions to this. First, you can navigate the NXT’s on-screen menu systems

to set the sleep time to “never”. That will work just find, but if you ever forget to turn

the

ock.

s long as it is running; for instance, have

one

een readings is still larger that expected (in some cases, particularly if the

program records a lot of data, a lot larger). These sort of unpredictable timing issues

really make it important to timestamp the data in most situations. These odd “pauses

by the way, are because the NXT doesn’t immediately write all the information to

memory when you ask it to – instead, it usually waits until it has “enough” text re

to write, and does it all at once. The occasional very long pauses are due to the NXT

having to move the entire file (copy it into a new portion of memory) because it ran

out of room where the old file was growing. There are ways around at least the 2nd of

these problems, but they are a little advanced – I only mention it so that people

understand what’s happening, even if you’re not worried about it most of the time.

Other Basic Points & Tidbits

There are a few other things that we really have to think about with datalogging

on the NXT. The first is how long

isn’t pushed after a certain

fter 10 minutes, and you

return to find the NXT turned off and only

ount of time. If the NXT thinks it’s should shut itself

try to run a program unattended fo

NXT off when you’re done with it, you’ll find it has remained on until the

batteries have been completely drained. A second solution is the Keep Alive bl

This is a block that resets the “countdown timer” on the NXT, functioning the same

way as a person pushing the button – a way to tell the NXT to remain awake (and

running our datalogging program). All we need to do is make sure that the program

occasionally executes a Keep Alive block a

 at the end of the main Loop:

Fig 1-9: The Keep Alive block inside the main Loop,

so it is executed each time through

This solution has another advantage as well. As long as the program is running, it

will keep the NXT “awake”… but once the program ends (perhaps, after your

program has run for the desired amount of time), the NXT is free to “time out” and

shut itself off, conserving whatever power source it was running on. This would be

very handy if you were running on battery power, and don’t want to just wear out

batteries repeatedly on long-term projects.

This brings up the related problems of power-sources: conserving batteries is good,

but

on

 you

 a

ng

e

nother improvement that we could make is to have the code look a little better,

and maybe be more reusable as well. Now that we have a program that can

sensor value, we could probably just make a My Block that would function

Value” block, taking as an input something to write into the file, and addin

timestamp for us, perhaps even handling the timed wait. Turning all this into a My

Block not only makes the program easier to understand, but it means the ne

this program, or in some other) that we need to log some data, we have a kn

tested, debugged way of doing it, and don’t have to “reinvent the wheel” ea

every time. Here’s a very simple example called “EasyDL”; it uses a My B

named “Timestamp” to record a number that is wired into it to a file, taking care of all

the formatting and details for you. It’s not as accurate, or as flexible, as the

program we developed, but it shows an alternate way of doing it, and one t

it extremely easy to put together a spur-of-the-moment datalogging program

 for really long-term projects, normal batteries might not be enough (or, you might

be tired of recharging or buying new ones constantly). If you have the LEGO Li-i

battery pack for the NXT and you are working indoors, you can plug the NXT into a

wall outlet, running it from the house current and not from the batteries. This way

can continually acquire data for perhaps days or weeks at a time – without spending

fortune in replacing batteries*. Even if you don’t use the Li-ion battery pack, normal

fresh batteries can run the NXT for a very very long time, as long as it is not drivi

motors continuously. The more “mAhr” (milliamp-hours) a battery packs, generally

the longer it will last; normally longer than 24 hours or more. In the only case I’v

fully documented, it took more than 50 hours of continuous datalogging to wear out

one set of Energizer Lithium E2 AA’s (these are also very light weight, and have

amazing low-temperature performance… they will continue driving the NXT at

temperatures far below freezing, for instance).

A

 log a

 as a “Log

g the

xt time (in

own,

ch and

lock

 first

hat makes

:

Fig 1-10:

 a

value

using a

k

EasyDL,

very

simple

program

that will

log the

sound

sensor

My Bloc

Another thing this program demonstrates is that the file name to be used can be

wired in as well, so that it could be changed from run to run, for instance… allo

one program to create different files like “Logfile1”, “Logfile2”, etc., instead of ju

always overwriting the one files). All that’s needed is a simple way for the user to

adjust the file name

wing

st

 (perhaps by adding a user-specified number that’s entered using

the left and right arrow keys on the front of the NXT), and during one trip away from

the

g a

 and good, there are lots of other things to log than

just the readings of a single light sensor. What if we wanted to log a sound sensor (say,

to m in a school hallway)? Well, just replace the light sensor block

with the sound sensor one, or whatever else we want to log: maybe a custom sensor,

or a

computer (say, a visit to an amusement park) the user could take multiple files

throughout the day, without having to download each and every one before takin

new one.

Finally, while this is all well

onitor noise levels

 number calculated some other way. Of course we can also log more than one

piece of data at each timestamp – the same way a comma was used to separate the

time from the sensor in the file, another sensor could be added to the same line, just

separated by another comma. That way, when we import the file into the spreadsheet

program, it ends up with three (or more) columns, one for each piece of data. There’s

a lot of flexibility to take advantage of even with this very simple program. And the

beauty of this method is that not only are you learning about the results of the

data

ore

come

y

d

 have

s. Even control motors or lights or

other outputs, depending on what the situation is. These are abilities almost no

comme nothing in the price range of the

NXT.

Sec

omple

need to understand what exactly the sensors are doing. Should we measure the

instantaneous sensor reading, or the average? Or perhaps we want to record the

logging, but by doing it yourself you end up understanding how datalogging

works… as well as when it doesn’t, and how you can change it to suit exactly what

you want it to do.

*Note: some users have reported that the LEGO Li-ion battery packs have failed

after having been plugged in for weeks at a time (but other users have had them

function even after such use). In general, it might be a good idea not to just leave it

plugged in continuously for months at a time, but I’ve personally had no problems…

yet. You have been warned .

Parting Thoughts

Why use the NXT? Seriously, there are some amazing datalogger from some very

good companies that will do all this and much more. Commercial units can usually

log much faster than the NXT, often much longer, and usually can store many m

datapoints before filling their memories. In addition most commercial packages

with analysis software and are often smaller. Some of them are even cheaper than the

NXT, and I’ve used and could recommend several from different companies. So wh

bother with the NXT?

First, the NXT gives a flexibility that’s hard to match in such an inexpensive

package. Not only can it interface with a fairly wide variety of sensors and recor

more than one input channel, but almost unheard of is the degree of control you

over what and how it is logging things. Any pattern of logging you want you can

program – you are in no way limited to the way the manufacturer “thinks” it will be

used. For “brainless” datalogging (taking a series readings at pre-set intervals) almost

any off-the-shelf datalogger can be used. But with the NXT, a computer under your

control, you can do “smart” datalogging. Log only when values are changing rapidly,

or only when certain sensor are in certain range

rcial dataloggers can match, and certainly

ond, from the standpoint of education the NXT gives you a tool that is almost

tely “transparent” to the student. Because the student has to program it, they c

maxim he data, what does it

mean? How do we convert the sensor readings to “real units” like accelerations in

meters

e resolution or precision of the data, and how is that different from the accuracy?

ll these are critical questions to understand… and often they get glossed over

because either the student is never forced to face them, or worse has no way to

manipulate them (is the commercial datalogger recording the average readings, or the

instant-by-instant readings? Or something else? Often, the user doesn’t even know).

With the NXT you have a tool that is “open” to the student (and teacher!) in a way a

commercial unit isn’t. The NXT isn’t just a way to produce some data for analysis –

it’s a way to understand how that data is obtained. And in an educational setting that

is far more important than “just the numbers”.

um and minimum values and log those? Once we have t

per second squared, or light levels compared to some known standard? What is

th

A

Simple Windows Bluetooth Remote

Pretty early on, I made a pretty simple Windows application, that could control an NXT over

Bluetooth. I really haven't done much with it, but someone just asked me about it, so I figured

I'd post it.

There aren't many instructions. There is a very narrow button to the left of the "C" motor

button. And, another appears between the B & C motors.

Also, there are keyboard commands to run the motors. I think it's Q/A, W/S, & E/D.

