

Engineering with Circus - The Human canon ball

In-Class Team Competition:

The circus is in town! A recently lay-off Boeing engineer is trying out to become a member of the human canon ball team in the circus. The first test he is asked to do is to figure out how to fly over a newly constructed water tower and land safely on a trampoline without injuring himself. Before he actually does the stunt, he decides to make a scale model to test and see if he will be able to make the jump. Please help him !

Problem:

Find the angle, the height and the distance the engineer need to travel to land safely on the trampoline.

Given:

- The distance between the tower and the trampoline is same as the distance between tower to canon.
- The height of the tower is 28 cm .
- Initial velocity is $3.885 \mathrm{~m} / \mathrm{s}$
- Gravitational acceleration is $9.8 \mathrm{~m} / \mathrm{s}$

Additional Information:

Y direction
X direction

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ox}}=\mathrm{V}_{\mathrm{o}} \cos \theta \\
& \mathrm{~V}_{\mathrm{oy}}=\mathrm{V}_{\mathrm{o}} \sin \theta
\end{aligned}
$$

$\mathrm{V}_{\mathrm{fy}}{ }^{2}=\mathrm{V}_{\mathrm{oy}}{ }^{2}+2 \mathrm{aY}$
$\mathrm{V}_{\mathrm{fx}}{ }^{2}=\mathrm{V}_{\mathrm{ox}}{ }^{2}$
$\mathrm{V}_{\mathrm{fy}}=\mathrm{V}_{\mathrm{oy}}+\mathrm{at}$
$\mathrm{V}_{\mathrm{fx}}=\mathrm{V}_{\mathrm{ox}}$
$Y=V_{\text {oy }} t+1 / 2 \mathrm{at}^{2}$
$X=V_{o x} t$
$\mathrm{Y}=1 / 2\left(\mathrm{~V}_{\mathrm{fy}}+\mathrm{V}_{\mathrm{oy}}\right) \mathrm{t}$
$\mathrm{X}=1 / 2\left(\mathrm{~V}_{\mathrm{fx}}+\mathrm{V}_{\mathrm{ox}}\right) \mathrm{t}$

Additional Problem Constraints:

- Can you think of any other problems that are not being addressed in the model?

Judging:

We will see who made the jump. The winners get 1% extra credit points. Turn in the correct calculation get another 2% extra credit.

