

Engineering with Circus - The Human canon ball

In-Class Team Competition:

The circus is in town! A recently lay-off Boeing engineer is trying out to become a member of the human canon ball team in the circus. The first test he is asked to do is to figure out how to fly over a newly constructed water tower and land safely on a trampoline without injuring himself. Before he actually does the stunt, he decides to make a scale model to test and see if he will be able to make the jump. Please help him!

Problem:

Find the angle, the height and the distance the engineer need to travel to land safely on the trampoline.

Given:

- The distance between the tower and the trampoline is same as the distance between tower to canon.
- The height of the tower is 28cm.
- Initial velocity is 3.885m/s
- Gravitational acceleration is 9.8m/s

Additional Information:

Y direction
$$V_{ox} = V_{o} cos \theta$$

$$V_{oy} = V_o sin\theta$$

$$V_{\mathrm{fy}} \overset{2}{=} V_{\mathrm{oy}}^{2} + 2aY \qquad \qquad V_{\mathrm{fx}} \overset{2}{=} V_{\mathrm{ox}}^{2}$$

$$V_{fy} = V_{oy} + at$$
 $V_{fx} = V_{ox}$

$$Y=V_{oy} t+1/2 at^2$$
 $X=V_{ox} t$

$$Y=1/2(V_{fy}+V_{oy})t$$
 $X=1/2(V_{fx}+V_{ox})t$

Additional Problem Constraints:

• Can you think of any other problems that are not being addressed in the model?

Judging:

We will see who made the jump. The winners get 1% extra credit points. Turn in the correct calculation get another 2% extra credit.