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Announcement

PowerPoint lecture notes and assignment solutions
are now posted In:

http://courses.washington.edu/engr100/me230

Help session tomorrow in your assigned Recitation
section

Homework to hand in Wednesday!!

W. Wang



Lecture 3: Particle Kinematics

Kinematics of a particle (Chapter 12)
12.7-12.8
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Objectives

Concepts such as position, displacement, velocity and
acceleration are introduced

Study the motion of particles along a straight line. Graphical
representation

Investigation of a particle motion along a curved path. Use of
different coordinate systems

Analysis of dependent motion of two particles

Principles of relative motion of two particles. Use of
translating axis

W. Wang



Material covered

Kinematics of a particle

Curvilinear motion: Normal & tangential components
and cylindrical components

W. Wang



Objectives

Students should be able to:

Determine the normal and tangential components of
velocity and acceleration of a particle traveling along
a curved path .

Determine velocity and acceleration components
using cylindrical coordinates




Normal and tangential components |

When a particle moves along a curved path, it is sometimes convenient to
describe its motion using coordinates other than Cartesian. When the path of
motion is known, normal (n) and tangential (t) coordinates are often used

D‘,\ I

In the n-t coordinate system, the origin is SN
located on the particle (the origin moves with
the particle)

The t-axis is tangent to the path ve) at the instant considered, positive in the
direction of the particle’s '

The n-axis is perpendicular to the t-axis with the positive direction toward the

center of curvature of the curve
W. Wang



Normal and tangential components I

o The positive n and t directions are defined
) /n by the unit vectors u, and u,, respectively

The center of curvature, O’, always lies on
the concave side of the curve.

radlus of curvature, p, Is defined as the
ar distance from the curve to
the center of curvature at that point

Eadins of curvature

The position of the particle at any instant is defined by the distance; s,

along the curve from a fixed reference point (here O).
W. Wang



if the path traveled by a particle is known, then it may be convenient to use a path coordinate
plus normal and tangential vectors to represent kinematic quantities
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Velocity In the n-t coordinate system

The velocity vector is always tangent
to the path of motion (t-direction)

The magnitude Is determined by taking the
Velocity time derivative of the path function, s(t)

v=Vu, Where Vv =ds/dt

Here v defines the magnitude of the velocity (speed) and (unit
vector) u, defines the direction of the velocity vector.

W. Wang



Acceleration in the n-t coordinate system |

Acceleration is the time rate of change of velocity:
a = dv/dt = d(va)/dt = vu, + v u,

Here v represents the change in
the magnitude of velocity and u,
represents the rate of change in
the direction of u..

After mathematical manipulation,
the acceleration vector can be

expressed as: — How?

a=vu, + (V2lp)u, = au, +a.u,

W. Wang



* in n-t coordinates, a particle’s velocity is always tangent to the path, in the direction of u:
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a = dv/dt = d(va)/dt = Vu, + v i,

a=vu,+ (Vip)u,=au, +au,
W. Wang



Derivation of tangential and normal acceleration

We set up the coordinate system with the tangential unit direction tangent to the direction of motion

and the normal direction point towards the center of the curve,

W. Wang



Derivation of tangential and normal acceleration

V "
('l -
N

\ |

The velocity is the change in position over time, so the velocity is (by definition) tangent to the curve:

v dr ds i
de dt
S V=1,

W. Wang



Derivation of tangential and normal acceleration

ds u, u,
x . R . L&‘
i o I.hl
u,
P

Acceleration is the time rate of change of velocity. Using the product rule, we get:

av d .
a=—=—11

Cdt dt
La=va,+ 1 ')7

Vv is the rate at which the speed is increasing or decreasing, or the tangential acceleration:



Derivation of tangential and normal acceleration

; \du,
de
Ty
|
u

,’ g dp is small

i do

J

|

(e
We also need u, /Wg'can determine the differential change in the tangential by looking at the geometry

of the curve. Rérhember, we gré approximating the arc length ds by a circle. From Figure and

vector additioff we can see the new normal tangential direction is:

u, =u, +du,

W. Wang



Derivation of tangential and normal acceleration

We approximate the differential change di1, by an arc. The length of an arcis s =18, but in our case

the radius is |ﬁ, =1. Note the direction of change is the normal direction a_ .

- di, =1d6a,

We want the differential change with respect to time, therefore we have:
/ u,

i, =i L
oo du, is going in the same
direction as u,

Finally, we have:

— 1. + 1O .
A=, T du, magnitude change ~ d& .

In normal-tangential coordinates, we typically have a path and a velocity, so we want to get ride of 6.

We are approximating the curve by a arc:

dS:pdg \dy Iut l'_lt

ds_ de
“ar P ™15

_ o {1
v = pb H‘wl

Or,
W. Wang



Derivation of tangential and normal acceleration

o=—
Po)

So acceleration in normal and tangential coordinates is,

=

a=au,+au =vu,+—u

o,

a, is the centripetal acceleration and a. is the tangential acceleration (or increase/decrease in speed).

W. Wang



Acceleration in the n-t coordinate system I

There are two components to the
acceleration vector:

a=au, ta,u,
Aoceleration

The tangential component Is tangent to the curve and in the direction of
Increasing or decreasing velocity.
a,=Vv or ads=vdv

The normal or centripetal component is always directed toward the
center of curvature of the curve, a, = v4/p.

The magnitude of the acceleration vector is

W. Wang a=[(a) + (a,)]°°



Acceleration in the n-t coordinate system I

The tangential component of acceleration Is constant, a, = (a),.
In this case,
s=s,+Vt+ (1/2)(a).t?

V=V, + (@)t
Ve = (Vo)2 + 2(at)(:(s - So)

a=vu + (V?/p)u,=au, +au,

As before, s, and v, are the initial position and velocity of the
particleatt=0

W. Wang



Special cases of motion |
There are some special cases of motion to consider

1) The particle moves along a straight line.

p ~ o => g =Vvip=0 => a=a=V

The tangential component represents the time rate of change in the magnitude
of the velocity.

2) The particle moves along a curve at constant speed. g

a,=v=0 => a=a,=Vp

The normal component represents the time rate of change in the direction of the

velocity.
W. Wang



Special cases of motion 11

3) The tangential component of acceleration is constant, a, = (a,)..
In this case,

s=s,+ V. t+ (1/2)(a)t?
V=V, + ()t
Ve = (Vo)2 + 2(at)c(s - So)
As before, s, and v, are the initial position and velocity of the particleatt =0

4) The particle moves along a path expressed as y = f(x).
The radius of curvature, p, at any point on the path can be calculated

from
p=_[1+ (dy/dx)? ]°2
d2y/dx ?|

W. Wang



Three dimensional motion

b osculating plane

If a particle moves along a space curve, the n
and t axes are defined as before. At any
point, the t-axis is tangent to the path and the
n-axis points toward the center of curvature.
The plane containing the n and t axes is
called the osculating plane.

A third axis can be defined, called the binomial axis, b. The binomial
unit vector, u,, is directed perpendicular to the osculating plane, and its

sense Is defined by the cross product  u, = u, X u,,.

There is no motion, thus no velocity or acceleration, in the binomial
direciian,



Normal and tangential components Il

b= bi-normal direction (perpendicular to both t and n
direction through a right hand rule) | @(

u
- 2-D planar motion, unit vector u, Is fix in space
- 3D motion unit vector u, Is not fix in space

Z-Axis (mm)
e
_|
*
=z

104,
10

2D, bi-normal direction is o w@
w.w  perpendicular to the screen 3D : "



Curvilinear motion:
Normal & tangential components

@m\*nwmm PEMO i

Metal Detector |

...Example 12.16 !

http://c-more.automationdirect.com/images/sample_box_conveyor.gif
W. Wang



Curvilinear motion:
Cylindrical components (12.8)

Applications

The cylindrical coordinate system is used
In cases where the particle moves along a
3-D curve.

(spiral motion)

Slide www.cim.mcgill.ca

W. Wang



Cylindrical and Polar coordinates

. _ Polar coordinates
Cylindrical Coordinates

Cylindrical coordinates are a generalization of two-dimensional polar coordinates to
three dimensions by superposing a height in (Z) axis.

W. Wang



Cylindrical components

u,

u

Position

We can express the location of P in polar coordinates as r = ru,. Note that the
radial direction, r, extends outward from the fixed origin, O, and the

transverse coordinate, 0, is measured counter-clockwise (CCW) from the
horizontal.

W. Wang



Velocity (Polar coordinates)

\ \ The instantaneous velocity Is defined as:
Ngh_ i v =dr/dt = d(ru,)/dt One simple way to
", d look at this is that Au,
/ b=t % basically going in the
0 P same direction as theta

Using the chain rule: A8 and its magnitude
change is cause only
ug \% A du /Jdt = (dur|/d9)(d€) by the angle change.
i We can prove that|du /d0 = u,|so du /dt = Ou,
/

Therefore: v =ru, + r0u,

/ .~ | Thus, the velocity vector has two components: T, called

the radial component, and r0, called the transverse
Velosiy component. The speed of the particle at any given
Instant is the sum of the squares of both components or

V:V(ré)%(r’)2

W. Wang




Position

Key points: u,- only change its direction with respect to time. Hence
during the time interval At, a change of Ar will not cause a change in
the direction of u,. However, a change A0 will cause u, to change to
u'. ,where u', = u, + Au,. Figure shows the time change in u, is

Au,.. For a small changing angle A©,
this vector has a magnitude of Au,~1(A8), and going in the u,

: : . : Au : A6 .
direction. Therefore 1, = lim — = ( lim —) = Ou,
At—oo At At—oo At

W Weng Therefore: v =7u, + rfu,



Acceleration (Polar coordinates)

The instantaneous acceleration is defined as:

a = dv/dt = (d/dt)(ru, + rOu,)

After manipulation, the acceleration can be

expressed as
P How? see Next page

a=(-r02u,+ (10 + 2r0)u,

The term (r' - réz) Is the radial acceleration or a..

Acceleration

The term (r + 2r0) is the transverse acceleration or a,

The magnitude of acceleration is a :\/ ("= r02)2 + (10 + 2i0)?
W. Wang



O

Velocity

\elocity vector is defined as, v = rug + 1uyg

Therefore, accelerationisa = v = fu,+ru,+ ry

onisa =y Z Ty

Since we Know 1t,.= Ou,, the only unknown in the equation is i1y so that’s what we
need to find.

Figure shows the time change in u, is Aug or a small changing angle A0,

this vector has a magnitude of Auy~1(A8), and going in the -u, direction.
= Tim 20 = _ (fim 29) = _¢

Therefore 1y = AltlgnOo o (Alginoo At) =—0u,

W. Wang



Then accleration in polar coordinates:

a = v = iu,+ri,+ rluy + rbuy + roiy

= Fu,+70uy + 1Ouy + réug

= (fu, — rééur)+(27"9u9+r65u9)

= —160) u, +(2r0+r8) u,

W. Wang



Polar coordinates

Position r=ru,

Velocity: v=ru, +r6u,
Acceleration: a = v =(# —1r00) u, +(270+r0) u,

W. Wang



Cylindrical coordinates

" If the particle P moves along a space curve, its
» position can be written as

} | Fp=Tlu,+ Zu,
Taking time derivatives and using the chain rule:

\elocity: v, = tu, + rOu, + Zu,
Acceleration: a, = (Y —r0%)u, + (rd + 2i0)u, + Zu.

W. Wang



Two Types of Pavblems

1. Given \£= I:&), Fond Ve&or_th/ é‘ Acceleraton

= D ifferentsation with chain rule,

2. Given Q) Fmd veloc.tv and posiHon.

= lIntegration.

W. Wang



Given:A car travels along the road with a
?_J\: (2s) m/s

( \ speed of v = (2s) m/s, where s Is

| In meters.
)/ p=50m
\ \'} Find: The magnitudes of the car’s

acceleration ats =10 m.

0 \ \ \ l‘ Plan:

1) Calculate the velocity when s = 10 m using v(s).

2) Calculate the tangential and normal components of
acceleration and then the magnitude of the
acceleration vector.



Acceleration in the n-t coordinate system I

The tangential component of acceleration is constant, a, = (a,)..

In this case,

V=V, +(a),

V2 = (Vo2 + 2(8) (8= 50)
a=vu,+ (Vip)u,=au *+au,

As before, s, and v, are the initial position and velocity of the
particleatt=0

W. Wang



EXAMPLE |

Solution: (continued)

1) The velocity vector is v = v u,, where the magnitude is
given by v = (2s) m/s.
Whens=10m: v

) The acceleration vector is a=
Tangential ent:
Sin = v = dv/dt = (dv/ds) (ds/dt) = v (dv/d
/ wherev=2s = a,=d(2s)/ds (v)=2V

0 m/s

U, agu, = \}ut + (Vzlp)”n

Use chain Ats=10m: a; = 40 m/s? No need to worry about
rule normal acceleration because
Norma| Component: an = V2/p it’s just a function of velocity

Whens=10m: a, = (20)?/(50) = 8 m/s?
The magnitude of the acceleration Is
a=[(@)? + (a)7°° = [(40)? + ()°5 =408 m/S? gy



Given: A boat travels around a
circular path, p =40 m, at a
speed that increases with

N time, v =(0.0625 t?) m/s.

\/ Find: The magnitudes of the boat’s
’ velocity and acceleration at
the instantt = 10 s.

Plan:

The boat starts from rest (v = 0 when t = 0).

1) Calculate the velocity at t = 10 s using v(t).

2) Calculate the tangential and normal components of
acceleration and then the magnitude of the

acceleration vector.
<]



Solution:

1) The velocity vector is v = v u,, where the magnitude is
given by v = (0.0625t%) m/s. Att = 10s:

v = 0.0625 t> = 0.0625 (10)? = 6.25 m/s
2) The acceleration vector is a = au, + a,u, = Vu, + (V?/p)u,.

Tangential component: a, = v = d(.0625 t2)/dt = 0.125 t m/s?
Att=10s: a =0.125t=0.125(10) = 1.25 m/s?

Normal component: a, = v4/p m/s?
Att=10s: a,=(6.25)?/ (40) = 0.9766 m/s?

The magnitude of the acceleration is
a=[(a)?+ (a,)?]%°> = [(1.25)* + (0.9766)-]°> = 1.59 m/s? <>



EXAMPLE 11

The slotted link is pinned at (), and as a result of the
constant angular velocity # = 3 rad/s it drives the peg P for
a short distance along the spiral guide r = (0.46) m, where
f is in radians. Determine the velocity and acceleration of
the particle at the instant it leaves the slot in the link, i.e.,

when r = 0.5 m.

Atr =05m,
r=04¢
. ﬁ=%=1.2513d
r=0486 '
- . F=1.20
r=048
_ F=0
# =3 :
v, =1 = 120m/s
6 =0 vy =18 = 05(3) = 1.50m/s

a, =7 — r(6)? =0 — 05(3)% = —4.50 m/s?
ag = ré + 270 = 0 + 2(1.20)(3) = 7.20 m/s?

Magnitude of the velocity and acceleration vectors : v = [(v,)? + (v,)?]%° and a = [(a,)? + (84)?]°°
W. Wang



Polar coordinates

Position r=ru,

Velocity: v=ru, +r6u,
Acceleration: a = v =(# —1r00) u, +(270+r0) u,

W. Wang



Homework Assignment

Chapter 12: 10, 22, 24, 26, 28, 32, 37, 62, 71, 92,
98, 112, 120, 122, 144, 163, 175, 179

Due Wednesday !!!

W. Wang



W. Wang



Lecture 4: Particle Kinematics

Kinematics of a particle (Chapter 12)
12.9-12.10
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Kinematics of a particle: Objectives

Concepts such as position, displacement, velocity and
acceleration are introduced

Study the motion of particles along a straight line. Graphical
representation

Investigation of a particle motion along a curved path. Use of
different coordinate systems

Analysis of dependent motion of two particles

Principles of relative motion of two particles. Use of
translating axis

W. Wang



Material covered

Kinematics of a particle
Absolute dependent motion analysis of two particles

Relative motion analysis of two particles using translating axis

W. Wang



Objectives

Students should be able to:

Relate the positions, velocities, and accelerations of particles
undergoing dependent motion

Understand translating frames of reference
Use translating frames of reference to analyze relative motion

W. Wang



Pulley Systems
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Alright, alright, you've won your bet:
You can lift me with one hand...



Pulley

* The more pulleys we have the Two pulley system

easier it is to lift heavy
objects. As rope Is pulled L
from the top pulley wheel,
the load and the bottom
pulley wheel are lifted. If 2
metres of rope are pulled

through the bucket (load) will é
only rise 1 metre (there are

two ropes holding the bucket
and both have to shorten).



Applications |

The cable and pulley system
shown here can be used to
modify the speed of block B
relative to the speed of the
motor. It is important to relate
the various motions in order to
determine the power
requirements for the motor and
the tension in the cable



W. Wang

Applications ||

Rope and pulley
arrangements are often used
to assist in lifting heavy
objects. The total lifting
force required from the
truck depends on the
acceleration of the cabinet



Dependent motion

In many kinematics problems, the motion of one object will depend on
the motion of another object

Datum- a fixed starting point
~Datum

The blocks in this figure are
connected by an inextensible cord
wrapped around a pulley. If block A
moves downward along the inclined
plane, block B will move up the
other incline

« Datum

The motion of each block can be related mathematically by defining
position coordinates, s, and sg. Each coordinate axis is defined from a
fixed point or datum line, measured positive along each plane in the

direction of motion of each block
W. Wang



Dependent motion (continued)

0" pam Inthis example, position
coordinates s, and sg can be
defined from fixed datum lines
extending from the center of the
pulley along each incline to blocks

Aand B

If the cord has a fixed length. the position coordinates s, and sg are
related mathematically by the equation

Satleptsg=lt

Here |+ is the total cord length and |- Is the length of cord passing over
arc CD on the pulley

W. Wang



Dependent motion (continued)

~Datum

Datum

The velocities of blocks A and B can be
related by differentiating the position
equation. Note that |5 and | remain

constant, so dl-p/dt = dl;/dt=0

dsn/dt + dsg/dt=0 => vg=-v,

The negative sign indicates that as A moves down the incline (positive
s, direction), B moves up the incline (negative sg direction)

Accelerations can be found by differentiating the velocity expression

W. Wang



Example

Consider a more complicated example.
Datum . - . -
, Position coordinates (s, and sg) are defined
from fixed datum lines, measured along the
direction of motion of each block

Note that sg Is only defined to the center
of the pulley above block B, since this

£ 9 block moves with the pulley. Also, hisa
| constant

Datum «—35,4 —

The red colored segments of the cord remain constant in length during
motion of the blocks

W. Wang




Example (continued)

The position coordinates are related
by the equation

Datum

i 2sg+h+s,=1I

Where | is the total cord length
minus the lengths of the red

: ‘ segments

Since | and h remain constant

o during the motion, the velocities
m/&“6 4 and accelerations can be related by
| two successive time derivatives:

Datum ¢—54 —

When block B moves downward (+sg), block A moves to the left (-s,).
W.Wang Remember to be consistent with the sign convention!



Example (continued)

Datum

This example can also be worked by defining
the position coordinate for B (sg) from the
bottom pulley instead of the top pulley

The position, velocity, and
acceleration relations then become

A

Datum ¢—354 — 2(h . SB) + h + SA — I
and  2vg =V, 205 = a,

W. Wang



Example

Given: In the figure on the left, the cord at
A is pulled down with a speed of 8 ft/s

Find: The speed of block B

Plan: There are two cords involved in the motion in this
example. The position of a point on one cord must be related to
the position of a point on the other cord. There will be two

position equations (one for each cord)
W. Wang



Example (continued)
Solution:
1) Define the position coordinates from a fixed datum line. Three
coordinates must be defined: one for point A (s,), one for block B (sg),
and one relating positions on the two cords. Note that pulley C relates
the motion of the two cords

Define the datum line through the top
pulley (which has a fixed position).

s, can be defined to the center of the
pulley above point A.

Sg can be defined to the center of the
pulley above B.

Sc Is defined to the center of pulley C.

All coordinates are defined as positive
down and along the direction of
motion of each point/object.

W. Wang



Example (continued)

2) Write position/length equations for each cord. Define |, as the length of the
first cord, minus any segments of constant length. Define |, in a similar manner
for the second cord: Cord 1: 25, + 25 = |,

il Cord 2: sg+(Sg—5S¢) =1,
‘ s 3) Eliminating s. between the two
‘ o equations, we get

25, +4sg =1, +2l,

4) Relate velocities by differentiating this expression. Note that I,
and |, are constant lengths.

2Vpa+4vg =0 => vg=-0.5v,=-0.5(8) =-4ft/s
i The velocity of block B is 4 ft/s up (negative sg direction).



Dependent motion: Procedures for analysis

These procedures can be used to relate the dependent motion of particles
moving along rectilinear paths (only the magnitudes of velocity and
acceleration change, not their line of direction)

Define position coordinates from fixed datum lines, along the path
of each particle. Different datum lines can be used for each particle
Relate the position coordinates to the cord length. Segments of cord
that do not change in length during the motion may be left out
If a system contains more than one cord, relate the position of a point
on one cord to a point on another cord. Separate equations are
written for each cord
Differentiate the position coordinate equation(s) to relate velocities

and accelerations. Keep track of signs!
W. Wang



Describe a pulley system
that allows the string on
the right to be pulled
through 10cms while the
string at the bottom is
pulled up 5cms.

Describe a pulley
system that allows the
string on the right to be
pulled through 40cms
while the string at the
bottom is pulled up
10cms.



Define | as the length of the cord,
minus any segments of constant
length.

/h>/ Cord : 2s, -H+ 2sg -h+ s. =1
Sg = S, (Move same amount of

distance)
SA

Relate velocities by differentiating
the above expression. Note that | Is
a constant length.

Ava+v., =0 => v, =-0.25v,

W. Wang



Pulley System

Two Three four SIX

Mechanical advantage and is calculated by dividing the load by
the effort (load/effort).

Lift height/pull length = 1/(load/effort) (Cons. Of energy)

Work = Force - distance
W. Wang



Fix and movable pulleys

Look at direction of supporting forces elative to load before
summing



Think about It...

(B) 200 mm dia (D) 120 mm dia
(A) 60 (C)100 mm dia ()40 mm dia
M |
100 mm dia /ﬁ - (F) 30 mm dia
| A >
&<
\
" g X
MOTOR \ OUTPUT PULLEY
DRIVER PULLEY COMPOUND PULLEY ~ COMPOUND PULLEY ~ WHEEL
WHEEL WHEEL
THINK
What Is rotation speed 6 at pulley F? Blo

http://www.technologystudent.com/gears1/pulley6.htm

W. Wang




Show Lego gearbox

W. Wang



Now It I1s time to move to 12.10...

Relative motion analysis of two particles
using translating axis

s 8000,
“ o

)

W. Wang



Applications |

20 fr

d

When you try to hit a moving object, the position, velocity, and
acceleration of the object must be known. Here, the boy

on the ground is at d = 10 ft when the girl in the window throws the ball
to him

If the boy on the ground is running at a constant speed of 4 ft/s,

how fast should the ball be thrown?
W. Wang



Applications |1

When fighter jets take off or land on an
alrcraft carrier, the velocity of the carrier
s becomesan issue

S0 km/h

If the aircraft carrier travels at a forward velocity of 50 km/hr and
plane A takes off at a horizontal air speed of 200 km/hr (measured by
someone on the water), how do we find the velocity of the plane
relative to the carrier?

How would you find the same thing for airplane B?

How does the wind impact this sort of situation?
W. Wang



Relative position

The absolute position of two
particles A and B with respect to
a the fixed X, y, z reference frame are
given by r, and r,. The position of
B relative to A is represented by

Translating
ohserver

Ypa = Tp = ¥4

Or Fp= ¥4+ Fpiy
Therefore, iIf rp=(10i+25)m
and r,= (4i+5j)m

then rg,=(0i-3j)m

W. Wang



Relative velocity

To determine the relative velocity
of B with respect to A, the time
derivative of the relative position
equation is taken.

Yy — Vp—Vy

or

Vg = V4 T Vg,

In these equations, v, and v, are called absolute velocities and vy, Is the
relative velocity of B with respect to A.

W. Wang Note that Yy = ~Vyp-



Relative acceleration

Ap/4

The time derivative of the relative velocity

equation yields a similar vector relationship
between the absolute and relative

accelerations of particles Aand B

ap,y — Ap—a,

or

ag = a,+ag,
W. Wang



Solving problems

Since the relative motion equations are vector equations, problems
Involving them may be solved in one of two ways.

For instance, the velocity vectors in v, = v, + v, could be written as
Cartesian vectors and the resulting scalar equations solved for up to two

unknowns. .
Co (o

1

w

4 6 1%

S %Zp
Alternatively, vector problems can be solved “graphically” by use of

trigonometry. This approach usually makes use of the law of sines or the

law of cosines.
W. Wang



L_aws of sines and cosines

Since vector addition or subtraction

forms a triangle, sine and cosine laws can
a o be applied to solve for relative or

absolute velocities and accelerations.

For review, their formulations are

C provided below.
LawofSines: __a _ _ b _ _ ¢
sin A sin B sin C

Law of Cosines: a2 = b2 + c? — 2bc cosA

2
b2=a2+ c- — 2accosB

2 2 2
W. Wang Cc =a + b — 2abcosC



W. Wang

Example

Both boats A and B leave the shore at O at the same time. If
A travels at vy and B travels at wvg, write a general
expression to determine the velocity of A with respect to B.
Relative Velocity:
Y4 = Vg + ‘FAII,!B
v4] = vg sinfi + vgcosfj + Va/B

Va/B = —Up sin i + (v4 — vgcos B))

Thus, the magnitude of the relative velocity v 4/p is

Vap = V(—vgsin 6)® + (v, — vgcos B)

= Vi + v} — 2v vpc086

And its direction is

V4 — VgcCcOSH
ﬂ=tan—1( A 5 ) 5
vy sin o



Homework Assignment

Chapter 12- 211, 232, 234, 238
Chapter 13-16, 22, 28, 42, 43, 48

Due next Wednesday !!

W. Wang



W. Wang



Important contributors
Galileo Galilel, Newton, Euler

Equilibrium of a Mechanics

body that Is at : . Accelerated
. Statics Dynamics :
rest/moves with Y motion of a body

constant velocity

Kinematics: geometric aspects of the motion




Introducing Particle Kinetics, Chapter 13

e Chapter 13 introduces the kinetics of a particle

e kinetics: the study of the relationships between changes in motion of a body and the forces
which cause those changes

e particle: a body which can be modeled as having zero physical dimensions

e Chapter 13 unfolds by gradually increasing the complexity of our view of this topic, considering
different kinds o{ equations of motion in different coordinate systems

)

EOM

Newton’s Second Law: F = ma (13.1)

the equation of motion: motion of a particle (13.2)

EOM for a particle system: motion of a particle system (13.3)
EOM: using rectangular coordinate system (13.4)

EOM: using normal/tangential coordinate system (13.5)
EOM: using cylindrical coordinate system (13.6)

o
0
0
0
o
o

W. Wan




Lecture 5: Particle Kinetics

Kinetics of a particle (Chapter 13)
13.1-13.3

W. Wang



Chapter 13: Objectives

State Newton’s laws of motion
and gravitational attraction.
Define mass and weight

To analyze the accelerated
motion of a particle using the
eguation of motion with
different coordinate systems

W. Wang



Material covered

Kinetics of a particle
Newton’s laws of motion
The equation of motion

Equation of motion for a system of particles

W. Wang



Objectives

Students should be able to:
Write the equation of motion for an accelerating body.
Draw the free-body and kinetic diagrams for an
accelerating body

W. Wang



Applications |

The motion of an object depends on the
forces acting on it

A parachutist relies on the atmospheric
drag resistance force to limit his
velocity

Q: Knowing the drag force, how can we determine the
acceleration or velocity of the parachutist at any point in time?

W. Wang



Applications |1

A freight elevator is lifted using a motor
attached to a cable and pulley system as
shown

Q1: How can we determine the tension
force In the cable required to lift the
elevator at a given acceleration?

Q2: Is the tension force in the cable greater than the weight
of the elevator and its load?

W. Wang



Newton’s laws of motion 1

The motion of a particle is governed by Newton’s three laws of motion

First Law: A particle originally at rest, or moving in a straight line at
constant velocity, will remain in this state if the resultant force acting on
the particle is zero SF=0

Second Law: If the resultant force on the particle is not zero, the particle
experiences an acceleration in the same direction as the resultant force.
This acceleration has a magnitude proportional to the resultant force.

Y F=ma

Third Law: Mutual forces of action and reaction between two particles

are equal, opposite, and collinear.
12=-F

W. Wang



Newton’s laws of motion 2

The first and third laws were used in developing the concepts of statics.
Newton’s second law forms the basis of the study of dynamics.

Mathematically, Newton’s second law of motion can be written:
Fp=ma
where F/, is the resultant unbalanced force acting on the particle, and a is

the acceleration of the particle. The positive scalar m is called the mass
of the particle.

Newton’s second law cannot be used when the particle’s speed
approaches the speed of light m(object)=m(stationary)/((1-
vA2/c"2)™(1/2)) where m(object) is relativistic mass, Vv Is the object's
velocity relative to the stationary observer and c is the speed of light, or
If the size of the particle is extremely small (~ size of an atom)

W. Wang



Newton’s law of gravitational attraction

Any two particles or bodies have a mutually attractive gravitational force
acting between them. Newton postulated the law governing this
gravitational force as;

F=G(mym,/r?)

where F = force of attraction between the two bodies,
G = universal constant of gravitation ,
m,, m, = mass of each body, and
r = distance between centers of the two bodies.

When near the surface of the earth, the only gravitational force having
any sizable magnitude is that between the earth and the body. This force
Is called the weight of the body

W. Wang



Distinction between mass and weight

It is Important to understand the difference between the mass and weight
of a body!

Mass Is an absolute property of a body. It is independent of the
gravitational field in which it is measured. The mass provides a measure

of the resistance of a body to a change in velocity, as defined by
Newton’s second law of motion (m = Fla)

The weight of a body is not absolute, since it depends on the
gravitational field in which it is measured. Weight is defined as

W =mg

where g Is the acceleration due to gravity

W. Wang



S| system vs FPS system

S| system: In the SI system of units, mass Is a base unit and weight is a
derived unit. Typically, mass is specified in kilograms (kg), and weight
Is calculated from W = mg. If the gravitational acceleration (g) Is
specified in units of m/s?, then the weight is expressed in newtons (N).
On the earth’s surface, g can be taken as g = 9.81 m/s.

W (N) = m (kg) g (m/s?) => N =Kkg-m/s?

FPS system: Inthe FPS system of units, weight Is a base unit and mass
Is a derived unit. Weight is typically specified in pounds (Ib), and mass
Is calculated from m = W/g. If g is specified in units of ft/s?, then the
mass is expressed in slugs. On the earth’s surface, g is approximately
32.2 ft/s°.

wwang M (slugs) = W (Ib)/g (ft/s?) => slug = Ib-s?/ft




Theory: The Equation of Motion (13.2)

. Newton’s Second Law in vector form:

bold Terllls |
A ’D F)a ave bett
EOM s ZF@ma vecfor s

e we typically view kinetics using a kingtics diagram, which is &n extended version of a FBD

|

: 6 - ma
-

® ~HS ’%,{M'Hc cLA'agfLaun
Free-body Kinetic
diagram diagram

W. Wang



Inertial frame of reference

This equation of motion is only valid if the acceleration is measured in a
Newtonian or inertial frame of reference. What does this mean?(Means that

coordinate system does not rotate and is either fixed or translates with constant
velocity)

For problems concerned with motions at or near the earth’s surface, we
typically assume our “inertial frame” to be fixed to the earth. We neglect any
acceleration effects from the earth’s rotation.

For problems involving satellites or rockets, the inertial
frame of reference is often fixed to the stars.

W. Wang




ﬁ{;(ed / t‘g[olnaﬂ j

Theory@eference Frame

e consider an observer watching the motion of a particle

) o o
( Inertial frame of reference

W. Wang



Equation of motion for a system of particles

The equation of motion can be extended to include systems of particles. This
Includes the motion of solids, liquids, or gas systems.

As in statics, there are internal forces and external forces acting on the system.
What is the difference between them?

Inertial coordinate
W. Wang system



Theory: A System of Particles (13.3)

* for a system of particles, which contains both external forces Fi and internal (equal and
opposite) forces of interaction f; between particles:

Fl:‘- external —ﬁvu_r

-FL- = mtervad 'Fa)vc_t:r

‘EJ ~ "(ij-i)
e ot o B

fV] '?"C.JVVLJ—@ 'I%V“r
CarrcR (

2%_:-:0

= only use  exderrod foras

W. Wang w F =ma



Important points !!

|
A\

1) Newton’s second law Is a “Law of Nature”--experimentally
proven and not the result of an analytical proof.

2) Mass (property of an object) is a measure of the resistance
to a change in velocity of the object.

3) Weight (a force) depends on the local gravitational field.
Calculating the weight of an object is an application of
F=ma,le,W=mayg.

4) Unbalanced forces cause the acceleration of objects. This

condition is fundamental to all dynamics problems!
W. Wang



How to analyze problems that involve
the equation of motion

1) Select a convenient inertial coordinate system. Rectangular,
normal/tangential, or cylindrical coordinates may be used.

2) Draw a free-body diagram showing all external forces
applied to the particle. Resolve forces into their
appropriate components.

3) Draw the kinetic diagram, showing the particle’s inertial
force, ma. Resolve this vector into its appropriate
components.

4) Apply the equations of motion in their scalar component
form and solve these equations for the unknowns.

5) It may be necessary to apply the proper kinematic relations
W &gngenerate additional equations.



Example

Given: A crate of mass m is pulled by a cable attached to a truck.
The coefficient of kinetic friction between the crate and
road IS L.

Find: Draw the free-body and kinetic diagrams of the crate.

Plan: 1) Define an inertial coordinate system.

2) Draw the crate’s free-body diagram, showing all
external forces applied to the crate in the proper
directions.

3) Draw the crate’s kinetic diagram, showing the inertial

force vector ma in the proper direction.
W. Wang



Example (continued)

Solution:
1) An inertial x-y frame can be defined as fixed to the ground.

2) Draw the free-body diagram of the crate:

y W=mg T The weight force () acts through the

crate’s center of mass. 7' is the tension

--------- force in the cable. The normal force (/V)
IS perpendicular to the surface. The

F=ucN friction force (/= u,N) acts in a direction
opposite to the motion of the crate.

3) Draw the kinetic diagram of the crate:

The crate will be pulled to the right. The
acceleration vector can be directed to the
right if the truck is speeding up or to the

left if it is slowing down.

W. Wang



Homework Assignment

Chapter 12- 211, 232, 234, 238
Chapter 13-16, 22, 28, 42, 43, 48

Due next Wednesday !!

W. Wang



W. Wang



