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Announcement

A. PowerPoint lecture notes and assignment solutions 
are now posted in:

http://courses.washington.edu/engr100/me230

B. Help session tomorrow in your assigned Recitation 
section 

C. Homework to hand in Wednesday!!

W. Wang



Lecture 3: Particle Kinematics

• Kinematics of a particle (Chapter 12)
- 12.7-12.8

W. Wang



Objectives 

• Concepts such as position, displacement, velocity and 
acceleration are introduced

• Study the motion of particles along a straight line. Graphical 
representation
• Investigation of a particle motion along a curved path. Use of 
different coordinate systems
• Analysis of dependent motion of two particles

• Principles of relative motion of two particles. Use of 
translating axis

W. Wang



Material covered

• Kinematics of a particle

- Curvilinear motion: Normal & tangential components 
and cylindrical components

- Next lecture; Absolute dependent motion. Analysis of 
two particles

…and…Relative motion. Analysis of two particles using 
translating axis 

W. Wang



Objectives

Students should be able to:
1. Determine the normal and tangential components of 

velocity and acceleration of a particle traveling along 
a curved path .

2. Determine velocity and acceleration components 
using cylindrical coordinates 

W. Wang



Normal and tangential components I

When a particle moves along a curved path, it is sometimes convenient to 
describe its motion using coordinates other than Cartesian.  When the path of 
motion is known, normal (n) and tangential (t) coordinates are often used

In the n-t coordinate system, the origin is 
located on the particle (the origin moves with 
the particle)

The t-axis is tangent to the path (curve) at the instant considered, positive in the 
direction of the particle’s motion

The n-axis is perpendicular to the t-axis with the positive direction toward the 
center of curvature of the curve

W. Wang



Normal and tangential components II

The positive n and t directions are defined 
by the unit vectors un and ut, respectively

The center of curvature, O’, always lies on 
the concave side of the curve.

The radius of curvature, , is defined as the 
perpendicular distance from the curve to 
the center of curvature at that point

The position of the particle at any instant is defined by the distance, s, 
along the curve from a fixed reference point (here O).

W. Wang



W. Wang



Velocity in the n-t coordinate system

The velocity vector is always tangent 
to the path of motion (t-direction)

The magnitude is determined by taking the
time derivative of the path function, s(t)

v = vut where     v = ds/dt

Here v defines the magnitude of the velocity (speed) and (unit 
vector) ut defines the direction of the velocity vector.

W. Wang



Acceleration in the n-t coordinate system I

Here v represents the change in 
the magnitude of velocity and ut
represents the rate of change in 
the direction of ut.

.
.

.
a = vut + (v2/)un = atut + anun

After mathematical manipulation, 
the acceleration vector can be 
expressed as:

Acceleration is the time rate of change of velocity:

a = dv/dt = d(vut)/dt = vut + v ut
· .

W. Wang

How?



W. Wang

a = dv/dt = d(vut)/dt = vut + v ut
· .

a = vሶut + (v2/)un = atut + anun



W. Wang

Derivation of tangential and normal acceleration 



W. Wang

Derivation of tangential and normal acceleration



W. Wang

Derivation of tangential and normal acceleration

??



W. Wang

Derivation of tangential and normal acceleration

d is small



W. Wang

Derivation of tangential and normal acceleration

dut is going in the same 
direction as un

dut , magnitude change ~ d



W. Wang

Derivation of tangential and normal acceleration



Acceleration in the n-t coordinate system II

There are two components to the 
acceleration vector:

a = at ut + an un

The tangential component is tangent to the curve and in the direction of 
increasing or decreasing velocity.

at = v     or     at ds = v dv
The normal or centripetal component is always directed toward the 
center of curvature of the curve, an = v2/

The magnitude of the acceleration vector is

a = [(at)2 + (an)2]0.5

.

W. Wang



W. Wang

The tangential component of acceleration is constant, at = (at)c.

In this case, 

s = so + vot + (1/2)(at)ct2

v = vo + (at)ct

v2 = (vo)2 + 2(at)c(s – so)

a = vሶut + (v2/)un = atut + anun

As before, so and vo are the initial position and velocity of the 
particle at t = 0

Acceleration in the n-t coordinate system II



Special cases of motion I
There are some special cases of motion to consider

1) The particle moves along a straight line.

 ~    =>     an = v2/ a = at = v

The tangential component represents the time rate of change in the magnitude
of the velocity.

2) The particle moves along a curve at constant speed.

at = v = 0     =>     a = an = v2/

The normal component represents the time rate of change in the direction of the 
velocity.

.

.

W. Wang



Special cases of motion II

3) The tangential component of acceleration is constant, at = (at)c.

In this case, 

s = so + vot + (1/2)(at)ct2

v = vo + (at)ct

v2 = (vo)2 + 2(at)c(s – so)

As before, so and vo are the initial position and velocity of the particle at t = 0

4) The particle moves along a path expressed as y = f(x).
The radius of curvature,  at any point on the path can be calculated 
from

 = ________________]3/2(dy/dx)21[ 
2d2y/dx

W. Wang



Three dimensional motion

If a particle moves along a space curve, the n 
and t axes are defined as before.  At any 
point, the t-axis is tangent to the path and the
n-axis points toward the center of curvature.  
The plane containing the n and t axes is 
called the osculating plane.

A third axis can be defined, called the binomial axis, b.  The binomial 
unit vector, ub, is directed perpendicular to the osculating plane, and its 
sense is defined by the cross product     ub = ut x un.

There is no motion, thus no velocity or acceleration, in the binomial 
direction.W. Wang



W. Wang

Normal and tangential components III

b= bi-normal direction (perpendicular to both t and n 
direction through a right hand rule)

- 2-D planar motion, unit vector ub is fix in space
- 3D motion unit vector ub is not fix in space

ut

un

ub

2D, bi-normal direction is 
perpendicular to the screen 3D



Curvilinear motion:
Normal & tangential components

http://c-more.automationdirect.com/images/sample_box_conveyor.gif

…Example 12.16 !!!!

W. Wang



Curvilinear motion:
Cylindrical components (12.8)

Applications

The cylindrical coordinate system is used 
in cases where the particle moves along a 
3-D curve.

www.cim.mcgill.ca

(spiral motion)

W. Wang

Slide



W. Wang

Cylindrical and Polar coordinates

Cylindrical coordinates are a generalization of two-dimensional polar coordinates to 
three dimensions by superposing a height in (Z) axis. 

Cylindrical Coordinates
Polar coordinates



Cylindrical components

We can express the location of P in polar coordinates as r = rur. Note that the 
radial direction, r, extends outward from the fixed origin, O, and the 
transverse coordinate,  is measured counter-clockwise (CCW) from the 
horizontal.

W. Wang



Velocity (Polar coordinates)

The instantaneous velocity is defined as:
v = dr/dt =  d(rur)/dt

v = rur + r
dur
dt

.

Using the chain rule:

dur/dt = (dur/d)(d/dt)

We can prove that dur/d = uθ so dur/dt = uθ

Therefore:  v = rur + ruθ

Thus, the velocity vector has two components:  r, called 
the radial component, and r called the transverse 
component.  The speed of the particle at any given 
instant is the sum of the squares of both components or

v =    (r 2 r )2

.

. .

.
.

. .W. Wang

One simple way to 
look at this is that ur
basically going in the 
same direction as theta 
 and its magnitude 
change is cause only 
by the angle change. 



W. Wang

dur/dt = uθ ?

Key	points: ௥ݑ only	change	its	direction	with	respect	to	time.	Hence	
during	the	time	interval	t,	a	change	of	r will	not	cause	a	change	in	
the	direction	of	ur.	However,	a	change	will	cause	ur to	change	to		
u′r ,	where	ݑ′௥ ൌ ௥ݑ ൅ ur	in	change	time	the	shows	Figure	௥.ݑ∆ is	
	angle	changing	small	a	For	௥.ݑ∆
this	vector	has	a	magnitude	of	∆ݑ௥~1 ߠ∆ ,	and	going	in	the	uθ

direction.	Therefore		ݑሶ ௥ ൌ lim
∆௧→ஶ

∆௨ೝ
∆௧

ൌ lim
∆௧→ஶ

∆ఏ
∆௧

ൌ ሶuθߠ

u’r
u’

Therefore:  v = ur + r uθ



Acceleration (Polar coordinates)
The instantaneous acceleration is defined as:

a = dv/dt = (d/dt)(rur + ruθ)

After manipulation, the acceleration can be 
expressed as

a = (r – r2)ur + (r + 2r)uθ

The term (r – r2) is the radial acceleration or ar.

The term (r + 2r) is the transverse acceleration or a

. .

.. .

.. ..

The magnitude of acceleration is a =   (r – r2)2 + (r + 2r)2.. . .. . .

W. Wang

How? see Next page
.. . .. ..



W. Wang

Velocity vector is defined as,  ݒ ൌ ఏሶݑݎ ൅ ఏݑሶݎ

Therefore, acceleration	is	ܽ ൌ ሶݒ ൌ ௥ሶݑሶݎ+௥ݑሷݎ ሶݎ	+ ௥ሶݑ ఏݑ ൅ ఏݑሷߠݎ ൅ ሶݑሶߠݎ ఏ

Since we know ݑሶ ௥= ߠሶuθ, the only unknown in the equation is ݑሶ ఏ so that’s what we 
need to find. 

Fortunately, ݑሶ ఏ	only	change	its	direction	with	respect	to	time.	Hence	during	the	
time	interval	t,	a	change	of	r will	not	cause	a	change	in	the	direction	of	uθ.	
However,	a	change	will	cause	u to	change	to		u′ ,	where	ݑ′ఏ ൌ ఏݑ ൅ 	.ఏݑ∆
Figure	shows	the	time	change	in	uθ is	∆ݑఏ or	a	small	changing	angle 
this	vector	has	a	magnitude	of	∆ݑఏ~1 ߠ∆ ,	and	going	in	the	‐ur direction.	
Therefore		ݑሶ ఏ ൌ lim

∆௧→ஶ
∆௨ഇ
∆௧

ൌ െ lim
∆௧→ஶ

∆ఏ
∆௧

ൌ െߠሶ ur



W. Wang

	:ݏ݁ݐܽ݊݅݀ݎ݋݋ܿ	ݎ݈ܽ݋݌	݊݅	݊݋݅ݐܽݎ݈݁ܿܿܽ	݄݊݁ܶ

ܽ ൌ ሶݒ ൌ ௥ሶݑሶݎ+௥ݑሷݎ ሶݎ	+ ఏݑሶߠ ൅ ఏݑሷߠݎ ൅ ሶݑሶߠݎ ఏ

ఏݑሶߠሶݎ+௥ݑሷݎ = ൅ ఏݑሶߠሶݎ ൅ -ఏݑሷߠݎ ௥ݑሶߠሶߠݎ

௥ݑሷݎ) = െ (ఏݑሷߠݎ+ఏݑሶߠሶݎ2)+(௥ݑሶߠሶߠݎ

ሷݎ) = െ (ሶߠሶߠݎ ur (ሷߠݎ+ሶߠሶݎ2)+ uθ



W. Wang

Polar coordinates

= ( ) ur +(2 + ) uθ

v = ur + uθ

r = rur

Velocity:

Acceleration:

Position



Cylindrical coordinates

If the particle P moves along a space curve, its 
position can be written as 

rP = rur + zuz

Taking time derivatives and using the chain rule:

Velocity: vP = rur + ruθ + zuz

Acceleration: aP = (r – r2)ur + (r + 2r)uθ + zuz
.. . .. . .

. . .

..

W. Wang



W. Wang



EXAMPLE I
Given:A car travels along the road with a 

speed of v = (2s) m/s, where s is 
in meters. 
 = 50 m

Find: The magnitudes of the car’s 
acceleration at s = 10 m.

Plan:

1) Calculate the velocity when s = 10 m using v(s).
2) Calculate the tangential and normal components of 

acceleration and then the magnitude of the 
acceleration vector.



W. Wang

The tangential component of acceleration is constant, at = (at)c.

In this case, 

s = so + vot + (1/2)(at)ct2

v = vo + (at)ct

v2 = (vo)2 + 2(at)c(s – so)

a = vሶut + (v2/)un = atut + anun

As before, so and vo are the initial position and velocity of the 
particle at t = 0

Acceleration in the n-t coordinate system II



EXAMPLE I 
(continued)Solution:

1) The velocity vector is v = v ut , where the magnitude is 
given by v = (2s) m/s.  
When s = 10 m: v  = 20 m/s

2) The acceleration vector is a = atut + anun = vut + (v2/)un
.

Tangential component:  
Since at = v = dv/dt = (dv/ds) (ds/dt) = v (dv/ds) 

where v = 2s    at = d(2s)/ds (v)= 2 v
At s = 10 m:  at = 40 m/s2

.

Normal component: an = v2/
When s = 10 m:  an = (20)2 / (50 = 8 m/s2

The magnitude of the acceleration is
a = [(at)2 + (an)2]0.5 = [(40)2 + (8)2]0.5 = 40.8 m/s2

Use chain 
rule

No need to worry about 
normal acceleration because 
it’s just a function of velocity



EXAMPLE II
Given: A boat travels around a 

circular path,  = 40 m, at a 
speed that increases with 
time,  v = (0.0625 t2) m/s.

Find: The magnitudes of the boat’s 
velocity and acceleration at 
the instant t = 10 s.

Plan:
The boat starts from rest (v = 0 when t = 0).
1) Calculate the velocity at t = 10 s using v(t).
2) Calculate the tangential and normal components of 

acceleration and then the magnitude of the 
acceleration vector.



EXAMPLE II 
(continued)Solution:

1) The velocity vector is v = v ut , where the magnitude is 
given by v = (0.0625t2) m/s.  At t = 10s:

v  =  0.0625 t2 = 0.0625 (10)2 =  6.25 m/s

2) The acceleration vector is a = atut + anun = vut + (v2/)un.
.

Tangential component:  at = v = d(.0625 t2 )/dt = 0.125 t m/s2

At t = 10s:  at = 0.125t = 0.125(10) = 1.25 m/s2

.

Normal component: an = v2/ m/s2

At t = 10s:  an = (6.25)2 / (40 = 0.9766 m/s2

The magnitude of the acceleration is
a = [(at)2 + (an)2]0.5 = [(1.25)2 + (0.9766)2]0.5 = 1.59 m/s2



W. Wang

EXAMPLE II

Magnitude of the velocity and acceleration vectors : v = [(vr)2 + (v)2]0.5 and a = [(ar)2 + (a)2]0.5



W. Wang

Polar coordinates

= ( ) ur +(2 + ) uθ

v = ur + uθ

r = rur

Velocity:

Acceleration:

Position



W. Wang

Homework Assignment

Chapter 12: 10, 22, 24, 26, 28, 32, 37, 62, 71, 92, 
98, 112, 120, 122, 144, 163, 175, 179

Due Wednesday !!! 



W. Wang



Lecture 4: Particle Kinematics

• Kinematics of a particle (Chapter 12)
- 12.9-12.10

W. Wang



Kinematics of a particle: Objectives 

• Concepts such as position, displacement, velocity and 
acceleration are introduced

• Study the motion of particles along a straight line. Graphical 
representation
• Investigation of a particle motion along a curved path. Use of 
different coordinate systems
• Analysis of dependent motion of two particles

• Principles of relative motion of two particles. Use of 
translating axis

W. Wang



Material covered

• Kinematics of a particle

- Absolute dependent motion analysis of two particles

- Relative motion analysis of two particles using translating axis

- Next lecture; Starting Chapter 13…

W. Wang



Objectives

Students should be able to:
1. Relate the positions, velocities, and accelerations of particles 

undergoing dependent motion

2. Understand translating frames of reference
3. Use translating frames of reference to analyze relative motion

W. Wang



Pulley Systems





Pulley
• The more pulleys we have the 

easier it is to lift heavy 
objects. As rope is pulled 
from the top pulley wheel, 
the load and the bottom 
pulley wheel are lifted. If 2 
metres of rope are pulled 
through the bucket (load) will 
only rise 1 metre (there are 
two ropes holding the bucket 
and both have to shorten). 



The cable and pulley system 
shown here can be used to 
modify the speed of block B 
relative to the speed of the 
motor.  It is important to relate 
the various motions in order to 
determine the power 
requirements for the motor and 
the tension in the cable

Applications I

W. Wang



Applications II

Rope and pulley 
arrangements are often used 
to assist in lifting heavy 
objects.  The total lifting 
force required from the 
truck depends on the 
acceleration of the cabinet

W. Wang



Dependent motion

In many kinematics problems, the motion of one object will depend on 
the motion of another object

The blocks in this figure are 
connected by an inextensible cord 
wrapped around a pulley.  If block A 
moves downward along the inclined 
plane, block B will move up the 
other incline

The motion of each block can be related mathematically by defining
position coordinates, sA and sB. Each coordinate axis is defined from a
fixed point or datum line, measured positive along each plane in the
direction of motion of each block

W. Wang

Datum- a fixed starting point 



Dependent motion (continued)

In this example, position 
coordinates sA and sB can be 
defined from fixed datum lines 
extending from the  center of the 
pulley along each incline to blocks 
A and B

If the cord has a fixed length, the position coordinates sA and sB are
related mathematically by the equation

sA + lCD + sB = lT

Here lT is the total cord length and lCD is the length of cord passing over 
arc CD on the pulley

W. Wang



Dependent motion (continued)

The velocities of blocks A and B can be 
related by differentiating the position 
equation.  Note that lCD and lT remain 
constant, so dlCD/dt = dlT/dt = 0

dsA/dt + dsB/dt = 0    => vB = -vA

The negative sign indicates that as A moves down the incline (positive 
sA direction), B moves up the incline (negative sB direction)

Accelerations can be found by differentiating the velocity expression
W. Wang



Example

Consider a more complicated example.  
Position coordinates (sA and sB) are defined 
from fixed datum lines, measured along the 
direction of motion of each block

Note that sB is only defined to the center 
of the pulley above block B, since this 
block moves with the pulley.  Also, h is a 
constant

The red colored segments of the cord remain constant in length during 
motion of the blocks

W. Wang



Example (continued)

The position coordinates are related 
by the equation

2sB + h + sA = l

Where l is the total cord length 
minus the lengths of the red 
segments

Since l and h remain constant 
during the motion, the velocities 
and accelerations can be related by 
two successive time derivatives:

2vB = -vA and     2aB = -aA

When block B moves downward (+sB), block A moves to the left (-sA).  
Remember to be consistent with the sign convention!W. Wang



Example (continued)

This example can also be worked by defining 
the position coordinate for B (sB) from the 
bottom pulley instead of the top pulley

The position, velocity, and 
acceleration relations then become

2(h – sB) + h + sA = l

and     2vB = vA 2aB = aA

W. Wang



Example 

Given: In the figure on the left, the cord at 
A is pulled down with a speed of 8 ft/s

Find:  The speed of block B

Plan: There are two cords involved in the motion in this 
example.  The position of a point on one cord must be related to 
the position of a point on the other cord.  There will be two 
position equations (one for each cord)

W. Wang



Example (continued)

sA sC sB

DATUMDatum

Solution:
1) Define the position coordinates from a fixed datum line.  Three 
coordinates must be defined: one for point A (sA), one for block B (sB), 
and one relating positions on the two cords.  Note that pulley C relates 
the motion of the two cords

•Define the datum line through the top 
pulley (which has a fixed position).

•sA can be defined to the center of the 
pulley above point A.

•sB can be defined to the center of the 
pulley above B.

•sC is defined to the center of pulley C.

•All coordinates are defined as positive 
down and along the direction of 
motion of each point/object.

W. Wang



Example (continued)
2) Write position/length equations for each cord.  Define l1 as the length of the 
first cord, minus any segments of constant length.  Define l2 in a similar manner 
for the second cord: Cord 1:  2sA + 2sC = l1

Cord 2:  sB + (sB – sC) = l2

3) Eliminating sC between the two 
equations, we get

2sA + 4sB = l1 + 2l2

4) Relate velocities by differentiating this expression.  Note that l1
and l2 are constant lengths.

2vA + 4vB = 0   =>   vB = - 0.5vA = - 0.5(8) = - 4 ft/s

The velocity of block B is 4 ft/s up (negative sB direction).

sA sC sB

DATUMDatum

W. Wang



Dependent motion: Procedures for analysis

These procedures can be used to relate the dependent motion of particles 
moving along rectilinear paths (only the magnitudes of velocity and 
acceleration change, not their line of direction)

1) Define position coordinates from fixed datum lines, along the path
of each particle. Different datum lines can be used for each particle

2) Relate the position coordinates to the cord length.  Segments of cord 
that do not change in length during the motion may be left out 

3) If a system contains more than one cord, relate the position of a point 
on one cord to a point on another cord. Separate equations are 
written for each cord

4) Differentiate the position coordinate equation(s) to relate velocities 
and accelerations. Keep track of signs!

W. Wang



Describe a pulley 
system that allows the 
string on the right to be 
pulled through 40cms 
while the string at the 
bottom is pulled up 
10cms.

Describe a pulley system 
that allows the string on 
the right to be pulled 
through 10cms while the 
string at the bottom is 
pulled up 5cms.



W. Wang

Define l as the length of the cord, 
minus any segments of constant 
length. 

Cord :  2sA -H+ 2sB -h+ sC = l

sB = sA (Move same amount of 
distance)

A

B
SB SA

Relate velocities by differentiating 
the above expression.  Note that l is 
a constant length.

4vA + vc = 0   =>   vc = - 0.25vA

c

H
h

Sc



W. Wang

Pulley System 

Two             Three               four                        six

Mechanical advantage and is calculated by dividing the load by 
the effort (load/effort). 
Lift height/pull length = 1/(load/effort) (Cons. Of energy)
Work = Force ∙ ݁ܿ݊ܽݐݏ݅݀



Fix and movable pulleys

Look at direction of supporting forces elative to load before 
summing



http://www.technologystudent.com/gears1/pulley6.htm

Think about it…

W. Wang

What is rotation speed at pulley F?



W. Wang

Show Lego gearbox



Now it is time to move to 12.10…

Relative motion analysis of two particles 
using translating axis

W. Wang



Applications I

When you try to hit a moving object, the position, velocity, and 
acceleration of the object must be known.  Here, the boy
on the ground is at d = 10 ft when the girl in the window throws the ball 
to him

If the boy on the ground is running at a constant speed of 4 ft/s, 
how fast should the ball be thrown?

W. Wang



Applications II

When fighter jets take off or land on an 
aircraft carrier, the velocity of the carrier 
becomes an issue

If the aircraft carrier travels at a forward velocity of 50 km/hr and 
plane A takes off at a horizontal air speed of 200 km/hr (measured by 
someone on the water), how do we find the velocity of the plane 
relative to the carrier?

How would you find the same thing for airplane B?

How does the wind impact this sort of situation?
W. Wang



Relative position

The absolute position of two 
particles A and B with respect to 
the fixed x, y, z reference frame are 
given by rA and rB. The position of 
B relative to A is represented by

rB/A  =  rB – rA

Or rB =  rA + rB/A 

Therefore,  if rB = (10 i + 2 j ) m

and rA =  (4 i + 5 j ) m

then rB/A = (6 i – 3 j ) m
W. Wang



Relative velocity

To determine the relative velocity
of B with respect to A, the time 
derivative of the relative position 
equation is taken.

vB/A =  vB – vA

or

vB =  vA +  vB/A

In these equations, vB and vA are called absolute velocities and vB/A is the
relative velocity of B with respect to A.

Note that vB/A =  - vA/B .W. Wang



Relative acceleration

The time derivative of the relative velocity 
equation yields a similar vector relationship 
between the absolute and relative 
accelerations of particles A and B

aB/A =  aB – aA

or

aB = aA + aB/A

W. Wang



Solving problems

Since the relative motion equations are vector equations, problems 
involving them  may be solved in one of two ways.

For instance, the velocity vectors in vB =  vA + vB/A could be written as
Cartesian vectors and the resulting scalar equations solved for up to two 
unknowns.

Alternatively, vector problems can be solved “graphically” by use of  
trigonometry.  This approach usually makes use of the law of sines or the
law of cosines.

W. Wang



Laws of sines and cosines

a b

c

C

B
A

Since vector addition or subtraction 
forms a triangle, sine and cosine laws can 
be applied to solve for relative or 
absolute velocities and accelerations.  
For review, their formulations are 
provided below.

Law of Sines:
C

c
B

b
A

a
sinsinsin 

Law of Cosines: Abccba cos2222 

Baccab cos2222 

Cabbac cos2222 W. Wang



W. Wang

Example



W. Wang

Homework Assignment

Chapter 12- 211, 232, 234, 238
Chapter 13-16, 22, 28, 42, 43, 48

Due next Wednesday !!! 



W. Wang



Kinematics of a particle: Introduction 

Important contributors
Galileo Galilei, Newton, Euler

Mechanics

Statics Dynamics

Equilibrium of a 
body that is at 
rest/moves with 
constant velocity

Accelerated 
motion of a body

• Kinematics: geometric aspects of the motion
• Kinetics: Analysis of forces which cause the motion

W. Wang



W. Wang
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Lecture 5: Particle Kinetics

• Kinetics of a particle (Chapter 13)
- 13.1-13.3

W. Wang



Chapter 13: Objectives

• State Newton’s laws of motion 
and gravitational attraction. 
Define mass and weight

• To analyze the accelerated 
motion of a particle using the 
equation of motion with 
different coordinate systems

W. Wang



Material covered

• Kinetics of a particle

- Newton’s laws of motion

- The equation of motion

- Equation of motion for a system of particles

- Next lecture; Equations of motion: Different coordinate 
systems

W. Wang



Objectives

Students should be able to:
1. Write the equation of motion for an accelerating body.
2. Draw the free-body and kinetic diagrams for an 

accelerating body

W. Wang



Applications I

The motion of an object depends on the 
forces acting on it

A parachutist relies on the atmospheric 
drag resistance force to limit his 
velocity

Q: Knowing the drag force, how can we determine the 
acceleration or velocity of the parachutist at any point in time?

W. Wang



Applications II

A freight elevator is lifted using a motor 
attached to a cable and pulley system as 
shown

Q1: How can we determine the tension 
force in the cable required to lift the 
elevator at a given acceleration?

Q2: Is the tension force in the cable greater than the weight 
of the elevator and its load?

W. Wang



Newton’s laws of motion 1

The motion of a particle is governed by Newton’s three laws of motion

First Law: A particle originally at rest, or moving in a straight line at 
constant velocity, will remain in this state if the resultant force acting on 
the particle is zero

Second Law: If the resultant force on the particle is not zero, the particle 
experiences an acceleration in the same direction as the resultant force.  
This acceleration has a magnitude proportional to the resultant force.

Third Law: Mutual forces of action and reaction between two particles 
are equal, opposite, and collinear.

W. Wang

F12 = -F21

F = ma,

F = 0,



Newton’s laws of motion 2
The first and third laws were used in developing the concepts of statics.  
Newton’s second law forms the basis of the study of dynamics.

Mathematically, Newton’s second law of motion can be written:

FR = ma

where FR is the resultant unbalanced force acting on the particle, and a is 
the acceleration of the particle.  The positive scalar m is called the mass 
of the particle.

Newton’s second law cannot be used when the particle’s speed 
approaches the speed of light m(object)=m(stationary)/((1-
v^2/c^2)^(1/2)) where m(object) is relativistic mass, v is the object's 
velocity relative to the stationary observer and c is the speed of light, or 
if the size of the particle is extremely small (~ size of an atom)

W. Wang



Newton’s law of gravitational attraction

Any two particles or bodies have a mutually attractive gravitational force 
acting between them.  Newton postulated the law governing this 
gravitational force as;

F = G(m1m2/r2)

where    F = force of attraction between the two bodies,
G = universal constant of gravitation ,

m1, m2 = mass of each body, and
r = distance between centers of the two bodies.

When near the surface of the earth, the only gravitational force having 
any sizable magnitude is that between the earth and the body.  This force 
is called the weight of the body

W. Wang



Distinction between mass and weight

It is important to understand the difference between the mass and weight 
of a body!

Mass is an absolute property of a body.  It is independent of the 
gravitational field in which it is measured.  The mass provides a measure 
of the resistance of a body to a change in velocity, as defined by 
Newton’s second law of motion (m = F/a)

The weight of a body is not absolute, since it depends on the 
gravitational field in which it is measured. Weight is defined as

W = mg

where g is the acceleration due to gravity
W. Wang



SI system vs FPS system

SI system: In the SI system of units, mass is a base unit and weight is a
derived unit.  Typically, mass is specified in kilograms (kg), and weight 

is calculated from W = mg.  If the gravitational acceleration (g) is 
specified in units of m/s2, then the weight is expressed in newtons (N).  

On the earth’s surface, g can be taken as g = 9.81 m/s2.

W (N) = m (kg) g (m/s2)  =>  N = kg·m/s2

FPS system: In the FPS system of units, weight is a base unit and mass 
is a derived unit.  Weight is typically specified in pounds (lb), and mass 
is calculated from m = W/g.  If g is specified in units of ft/s2, then the 
mass is expressed in slugs.  On the earth’s surface, g is approximately 

32.2 ft/s2.

m (slugs) = W (lb)/g (ft/s2)  =>  slug = lb·s2/ftW. Wang



W. Wang



Inertial frame of reference

This equation of motion is only valid if the acceleration is measured in a
Newtonian or inertial frame of reference.  What does this mean?(Means that 
coordinate system does not rotate and is either fixed or translates with constant 
velocity)

For problems concerned with motions at or near the earth’s surface, we 
typically assume our “inertial frame” to be fixed to the earth.  We neglect any 
acceleration effects from the earth’s rotation.

For problems involving satellites or rockets, the inertial 
frame of reference is often fixed to the stars.

W. Wang
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Equation of motion for a system of particles
The equation of motion can be extended to include systems of particles. This 
includes the  motion of solids, liquids, or gas systems.

As in statics, there are internal forces and external forces acting on the system.  
What is the difference between them?

W. Wang
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1) Newton’s second law is a “Law of Nature”--experimentally 
proven and not the result of an analytical proof.

2) Mass (property of an object) is a measure of the resistance 
to a change in velocity of the object.

3) Weight (a force) depends on the local gravitational field.  
Calculating the weight of an object is an application of             
F = ma, i.e., W = m g.

4) Unbalanced forces cause the acceleration of objects.  This 
condition is fundamental to all dynamics problems!

Important points !!

W. Wang



1) Select a convenient inertial coordinate system.  Rectangular, 
normal/tangential, or cylindrical coordinates may be used.

2) Draw a free-body diagram showing all external forces 
applied to the particle.  Resolve forces into their  
appropriate components.

3) Draw the kinetic diagram, showing the particle’s inertial 
force, ma.  Resolve this vector into its appropriate 
components.

4) Apply the equations of motion in their scalar component 
form and solve these equations for the unknowns.

5) It may be necessary to apply the proper kinematic relations 
to generate additional equations.

How to analyze problems that involve
the equation of motion

W. Wang



Given: A crate of mass m is pulled by a cable attached to a truck.  
The coefficient of kinetic friction between the crate and 
road is k.

Find: Draw the free-body and kinetic diagrams of the crate.

Plan: 1) Define an inertial coordinate system.
2) Draw the crate’s free-body diagram, showing all 

external forces applied to the crate in the proper 
directions.

3) Draw the crate’s kinetic diagram, showing the inertial 
force vector ma in the proper direction.

Example

W. Wang



1) An inertial x-y frame can be defined as fixed to the ground.
Solution:

3) Draw the kinetic diagram of the crate:

The crate will be pulled to the right.  The 
acceleration vector can be directed to the 
right if the truck is speeding up or to the 
left if it is slowing down.

2) Draw the free-body diagram of the crate:

The weight force (W) acts through the 
crate’s center of mass. T is the tension 
force in the cable.  The normal force (N) 
is perpendicular to the surface.  The 
friction force (F = uKN) acts in a direction 
opposite to the motion of the crate.

y

x

W = mg
T

30°

N
F = uKN

ma

Example (continued)

W. Wang
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Homework Assignment

Chapter 12- 211, 232, 234, 238
Chapter 13-16, 22, 28, 42, 43, 48

Due next Wednesday !!! 



W. Wang


