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Kinetics of a particle: Work & Energy
Chapter 14

Chapter objectives

Develop the principle of work and energy
and apply it in order to solve problems that
involve force, velocity and displacement

Concept of conservative force will be
introduced and application of theorem of
conservation of energy, in order to solve
kinetic problems, will be described
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Material covered

Kinetics of a particle: Work &
Energy

The work of a force
Principle of Work and Energy
Principle of Work and Energy for a

system of particles
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Objectives

Students should be able to:
Calculate the work of a force
Apply the principle of work and energy to a particle or system of
particles




Applications |

A roller coaster makes use of gravitational forces to assist the
cars 1n reaching high speeds in the “valleys” of the track.

How can we design the track (e.g., the height, h, and the radius
of curvature, p) to control the forces experienced by the
passengers?

W. Wang -



Applications |1

=L

| | =
i J_i_.;l'i':ai'r'ii'f"':].':'m-:' Crash barrels are often used along

| . w !
] {ri ;1".

roadways for crash protection.
The barrels absorb the car’s
kinetic energy by deforming

If we know the typical velocity of
an oncoming car and the amount of
energy that can be absorbed by
each barrel, how can we design a
crash cushion?
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Work and Energy

Another equation for working kinetics problems involving particles can
be derived by integrating the equation of motion (F = ma) with respect to
displacement

By substituting a, = v (dv/ds) into F, = ma,, the result 1s integrated to
yield an equation known as the principle of work and energy (F ds =

mvdv)

This principle 1s useful for solving problems that involve force, velocity,
and displacement. It can also be used to explore the concept of power

To use this principle, we must first understand how to calculate the work
of a force

W. Wang 8



Work of a force (14.1)

A force does work on a particle when the particle undergoes a
displacement along the line of action of the force

Work is defined as the product of force
and displacement components acting in
the same direction. So, if the angle
between the force and displacement
vector 1s 0, the increment of work dU
done by the force is;

dU =F ds cos O
By using the definition of the dot '
product and integration, the total U= I Fedr
work can be written as: r

W. Wang 9



Work of a force (14.1) continued...

If F'1s a function of position (a common case) this becomes

Sy

U,, = IF cos 0 ds

Sy

If both F and 0 are constant (F = F), this equation further
simplifies to F,

U1-2 - Fc cos 6 (SZ B Sl) 0

3 F.cos %2

Work 1s positive if the force and the movement are 1n the
same direction. If they are opposing, then the work 1s
negative. If the force and the displacement directions are

perpendicular, the work 1s zero
W. Wang 10




Work is positive 1f the force and the movement are in the same
direction. If they are opposing, then the work 1s negative. If
the force and the displacement directions are perpendicular, the
work 1s zero

F Sy

F v L/ U, = _[F cos 0 ds

S

\ 4
(N
9]
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Work of a weight (negative work)

The work done by the gravitational force acting on a particle
(or weight of an object) can be calculated by using;

N5 = il

Ui, = I-Wdy=-W(y2-y1)=-WAy ; .

Y2

y B4

Z

The work of a weight 1s the product of the magnitude of the particle’s
weight and its vertical displacement. If Ay is upward, the work 1s
negative since the weight force always acts downward

W. Wang 12



Work of a spring force

Ulnstretched
position, & = 0

ifs
[

; reccon When stretched, a linear elastic spring

) I .If Spring
%’*WM'—' develops a force of magnitude F, = ks, where

e k is the spring stiffness and s is the
‘ N ‘ \ displacement from the unstretched position
5 H k

iy

The work of the spring force moving from position s, to position
S, 1S; %2 %2
S

Sy

If a particle 1s attached to the spring, the force F, exerted on the
particle 1s opposite to that exerted on the spring. Thus, the work
done on the particle by the spring force will be negative or

W, Wang U, = —[ 0.5k (5,2 — 0.5k (5,)%] 1
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Spring forces

It 1s important to note the following about spring forces:

The equations shown are just for linear springs only!
Recall that a linear spring develops a force according to
F = ks (essentially the equation of a line)

The work of a spring 1s not just spring force times distance
at some point, 1.e., (ks;)(s;). Beware, this is a trap that

' !
students often fall into! Remember the work of the spring force moving from
position s, tg position s, is;
2 2

U1_2: JFS ds™ / k s ds= 0.5k(s,)? - 0.5k(s,)?

Always double check the sign of the spring work after
calculating 1t. It 1s positive work if the force put on the object
by the spring and the movement are in the same direction

W. Wang 15



Principle of work and energy (14.2 & 14.3)

By integrating the equation of motion, 2. F, = ma, = mv(dv/ds),
the principle of work and energy can be written as

2 U,,=12m(v,)?—-12m(v,)?> or T,+2U,,=T
12~ 2 I 12~ 1o

2.U,, is the work done by all the forces acting on the particle as
1t moves from point 1 to point 2. Work can be either a positive or
negative scalar

T, and T, are the kinetic energies of the particle at the initial and
ﬁnal position, respectively. Thus, T, =1/2m (v,)> and T,=1/2
m (v,)?. The kinetic energy is always a positive scalar (Velomty
1s squared!)

So, the particle’s initial kinetic energy plus the work done by all
the forces acting on the particle as it moves from its initial to final

position 1s equal to the particle’s final kinetic energy
W. Wang
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Principle of work and energy (continued...)

Note that the principle of work and energy (T, +2 U,,=T,) is
not a vector equation! Each term results in a scalar value

Both kinetic energy and work have the same units, that of
energy! In the SI system, the unit for energy 1s called a joule (J),
where 1 J =1 N-m. In the FPS system, units are ft:1b

The principle of work and energy cannot be used, in general, to
determine forces directed normal to the path, since these forces
do no work

The principle of work and energy can also be applied to a system
of particles by summing the kinetic energies of all particles in the
system and the work due to all forces acting on the system

W. Wang 17



WORK OF FRICTION CAUSED BY SLIDING

The case of a body sliding over a rough surface merits special

consideration.
Consider a block which 1s moving over a

rough surface. If the applied force P just
balances the resultant frictional force p, N,

— Wined
l s ¢ principle of work and energy would be
’“‘TT friction apphed as
P 12m (v)2 + Ps — (e N) s = 1/2m (v)?

N it’s
sliding

v
—_— —_—

— P i

This equation 1s satistied if P =y, N. However, we know from
experience that friction generates heat, a form of energy that does
not seem to be accounted for in this equation. It can be shown that
the work term (p, N)s represents both the external work of the
frigt\ig)nrgl force and the internal work that is converted into heat. I



Remember!

Energy equation 1s useful for solving problems that
involve force, velocity, and displacement.

Energy and work is a scalar, but still needs to find
forces doing work on the object. Only the forces going
in the direction of the motion will contribute any work!

W. Wang 19



EXAMPLE

Given: When s = 0.6 m, the spring is

.j;;—,-,;:-\-;—lk = 200 N/m not stretched or compressed,
Y and the 10 kg block, which is

D 4 subjected to a force of 100 N,

N F=100N has a speed of 5 m/s down
30/ - the smooth plane.

Find: The distance s when the block stops.

Plan: Since this problem involves forces, velocity and
displacement, apply the principle of work and energy to
determine s.

W. Wang *



EXAMPLE

Solution: (continued)
Apply the principle of work and energy between position 1

(s; = 0.6 m) and position 2 (s,). Note that the normal force (V)
does no work since 1t 1s always perpendicular to the

displacement.
Tl + ZUl_z — T2 3'\ <k=2()0N/m

There 1s work done by three different forces;
1) work of a the force F =100 N;

Ur =100 (s,—s;) =100 (s,— 0.6)
2) work of the block weight;

Uy =10 (9.81) (s,— s;) sin 30° =49.05 (s, — 0.6)
3) and, work of the spring force.

wyame  Us=-0.5(200) (5,-0.6)2 = -100 (s, 0.6)2 <>



EXAMPLE
(continued)

The work and energy equation will be
T,+2U,,=T,

0.5 (10)+100(s, — 0.6) + 49.05(s, — 0.6) — 100(s, — 0.6)2 =0
— 125+ 149.05(s, — 0.6) — 100(s, — 0.6)2 = 0

Solving for (s, — 0.6),
(s, —0.6) = {-149.05 £ (149.05% — 4%x(-100)x125)%3} / 2(-100)

Selecting the positive root, indicating a positive spring deflection,

(s,—0.6)=2.09m
Therefore, s, =2.69 m

W. Wang ’



CONCEPT QUIZ

1. A spring with an un-stretched length of 5 in expands from a
length of 2 1n to a length of 4 in. The work done on the spring
1S in‘lb .

A)-[0.5 k(4 in)?- 0.5 k(2 in)2] B)O0.5k (2 in)?
@0.5 k(3 in)? - 0.5 k(1 in)2] D) 0.5 k(3 in)? - 0.5 k(1 in)?

2. Ifaspring force is F =5 s? N/m and the spring is compressed
by s = 0.5 m, the work done on a particle attached to the
spring will be

A) 0.625N - m B) —0.625N - m
C) 0.0781 N - m —0.0781N-m

W. Wang 23 <




Example

: Given: The 2 1b brick slides
_‘2;_\:111;5 down a smooth roof,

I N with v,=5 ft/s.

== = N Find: The speed at B,

3 the distance d from the

30 fi " wall to where the brick

strikes the ground, and

its speed at C.

d

Plan: 1) Apply the principle of work and energy to the brick, and
determine the speeds at B and C.
2) Apply the kinematic relations in x and y-directions.

W. Wang gE



Example (continued)

1) Apply the principle of work and energy
2Ty +2U,p = 2Ty

1/ 2 1/ 2
2 (32 2) 5% +2(15) = E(ﬁ) (ve)*

Solving for the unknown velocity yields/ vy = 31.48 ft/s
Similarly, apply the work and energy principle between A and C
2T\ + 22U, = 2T
1/ 2 1/ 2
2 2
2 (32 2) 2045 =5 (32.2) (ve)

Ve =54.1 t/s




Theory: Projectile Motion (12.6)

*  projectile motion is a special case of erratic motion usually modeled using Cartesian vectors

* it is a special case, because projectiles move in the presence of a constant gravitational
acceleration in one direction (up/down), and (usually) negligible acceleration in another
(horizontally); projectiles are modeled as particles

*  we solve the problem using Cartesian coordinates, in two parts

Y direction Since we know V. we X direction
can find V, fron V,
Voy = V,s1nf and since V,_ is V,, =V, cosO
known then t can be
ny = \/voy2 +2a¥Y solved fo = \/vox2
Y=1/2 (nyJrVOy)t X=12(Vi+V )t

26
W. Wang



Example (continued)

2) Apply the kinematic relations in x and y-directions:

Equation for horizontal motion A
i q\ﬁkit;s

(+ _)) XC = XB + VBX tBC 15 ft _\R
d=0+31.48 (4/5)t = |
( ) BC = — \\;_B

= d =6.996 t5 m m AN

30 ft N,
™,

Equation for vertical motion o o

+1) Yc =Yg T Vpytpc— 0.5 8 tpc” * ‘
= -30=0+(-31.48)(3/5) tye — 0.5 (32.2) ty 2

Solving for the positive ty- yields t;- = 0.899 s.
= d =6.996 t5-= 6.996 (0.899) = 22.6 f{t

W. Wang



Theory: Projectile Motion (12.6)

*  projectile motion is a special case of erratic motion usually modeled using Cartesian vectors

* it is a special case, because projectiles move in the presence of a constant gravitational
acceleration in one direction (up/down), and (usually) negligible acceleration in another
(horizontally); projectiles are modeled as particles

*  we solve the problem using Cartesian coordinates, in two parts

Y direction Since we know V_ we X direction ve =54.1 ft/s
can find V, fron V,
Voy = V,s1nf and since V, is V., = V.cosd
5 5 known then t can be
Vi 7= Vo, F2aY solved
ny = VOy +at
Y=V,, t+1/2 at* X=V_t
Y=1/2(Vi, V)t X=172(V V)t
28

W. Wang



Example

Given: A 0.5 kg ball of negligible size is
fired up a vertical track of radius
1.5 m using a spring plunger with
k =500 N/m. The plunger keeps
the spring compressed 0.08 m
when s =0

k=500 M/m Proh. 14-10

Find: The distance s the plunger must be pulled back and released so
the ball will begin to leave the track (N=0) when
0=135°

Plan:

W. Wang 29



Look at what’s given

W. Wang
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1350

I.5m

1.5m

= 500 N {m

0.08m

Prob. 14-10

1.5 cos45°m

30



FBD

k=500 MN/m Prohb. 14-10

Normal tangential coordinate 1s easiest

W. Wang 31



What are the unknown?
T,+2U,,=T,

0.5m (v;)> = W Ay — (0.5k(s,)? — 0.5k (s))*) = 0.5m (v,)?

s;=s+0.08m,s,=0.08m
Ay=1.5+1.5sm45° = 2.5607 m
s and V, are unknown

How to find V,?

Equation of motion at 8=135°
Why?
W. Wang ma, = mv?/p=2F, 32



Example (continued)

Solution:

1) Draw the FBD of the ball at 0 =

k=500 M/m Proh. 14-10

The weight (W) acts downward through the
center of the ball. The normal force exerted
by the track 1s perpendicular to the surface.
The friction force between the ball and the
track has no component in the n-direction
2) Apply the equation of motion in the n-direction. Since the

ball leaves the track at © = 135°, set N =0
=> /l- 2F =ma =m(v¥/p) => W cos45°=m (v?/p)
=> (0.5)(9.81) cos 45° = (0.5/1.5)v> => v=3.225Tm/s

W. Wang




Example (continued)

3) Apply the principle of work and energy between position 1
(0 = 0) and position 2 (0 = 135°). Note that the normal force
(V) does no work since it 1s always perpendicular to the

displacement direction. (Students: Draw a FBD to confirm the
work forces)

T, +2U,= T,
0.5m (v,)?> — W Ay — (0.5k(s,)? — 0.5k (s;)?) = 0.5m (v,)?
and v, =0, v, =3.2257 m/s

$;=s+0.08m,s,=0.08m
Ay=15+1.5smn45° = 2.5607 m

=> 0 —(0.5)(9.81)(2.5607) — [0.5(500)(0.08)*> — 0.5(500)(s + 0.08)?]

=0.5(0.5)(3.2257)?
== s=0.179m=179 mm

W. Wang 34



X
/ \\ 1.5 cos45°m

_>\1.5 m
- 1.5m
A=
K= 300 N/m Prob. 14-10
0.08m

W. Wang 35



Homework Assignment

Chapter13-59, 65, 66, 75,91, 93,97, 107
Chapter14-3,11,14, 21

Due Wednesday !!!

W. Wang
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Lecture 9

Kinetics of a particle: Work and Energy (Chapter 14)
14.4-14.6




Kinetics of a particle: Work & Energy
Chapter 14

Chapter objectives

Develop the principle of work and energy
and apply 1t in order to solve problems that
involve force, velocity and displacement

Concept of conservative force will be
introduced and application of theorem of
conservation of energy, in order to solve

kinetic DrOb 1 emS o Will b e de S Crib e d ©2007 by R C. Hibbeler. To be published by Pearson Prentice Hall, Pearsan Education In'c Upper Saddle River, New Jersey. Al ights reserved
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Material covered

Kinetics of a particle
Power and efficiency

Conservative forces and potential energy

Conservation of energy

MIDTERM REVIEW

W. Wang
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Today’s Objectives

Students should be able to:

Determine the power generated by a machine, engine, or motor
Calculate the mechanical efficiency of a machine

Understand the concept of conservative forces and determine the
potential energy of such forces

Apply the principle of conservation of energy




Applications of power and efficiency |

Engines and motors are often rated in terms
of their power output. The power
requirements of the motor lifting this
elevator depend on the vertical force F that
acts on the elevator, causing it to move
upwards

Given the desired lift velocity for the
elevator, how can we determine the power
. requirement of the motor?

W. Wang 42



Applications of power and efficiency 11

The speed at which a vehicle can climb a hill depends 1n part

on the power output of the engine and the angle of inclination
of the hill

For a given angle, how can we determine the speed of this

jeep, knowing the power transmitted by the engine to the
whedlg?e 43



Power and efficiency (14.4)

Power 1s defined as the amount of work performed per unit
of time

If a machine or engine performs a certain amount of work,
dU, within a given time interval, dt, the power generated can
be calculated as

P = dU/dt

Since the work can be expressed as dU = F' » dr, the power
can be written

P = dU/dt = (F « dr)/dt = F « (dr/dt) = F v

Thus, power 1s a scalar defined as the product of the force
and velocity components acting in the same direction

W. Wang



Power

Using scalar notation, power can be written
P=Fev=Fvcos0
where 0 1s the angle between the force and velocity vectors

So 1f the velocity of a body acted on by a force F 1s known,
the power can be determined by calculating the dot product
or by multiplying force and velocity components

The unit of power 1n the SI system is the watt (W) where
I1W=1J/s=1(N -m)/s

In the FPS system, power 1s usually expressed in units of
horsepower (hp) where

1 hp = 550 (ft - Ib)/s = 746 W

W. Wang
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Efficiency

The mechanical efficiency of a machine 1s the ratio of the
useful power produced (output power) to the power supplied
to the machine (input power) or

& = (power output)/(power input)

[f energy input and removal occur at the same time, efficiency
may also be expressed in terms of the ratio of output energy
to input energy or

¢ = (energy output)/(energy input)

Machines will always have frictional forces. Since frictional
forces dissipate energy, additional power will be required to
overcome these forces. Consequently, the efficiency of a
machine is always less than 1

W. Wang 46



Procedure of analysis

Find the resultant external force acting on the body causing
its motion. It may be necessary to draw a free-body diagram

Determine the velocity of the point on the body at which the
force 1s applied. Energy methods or the equation of motion
and appropriate kinematic relations, may be necessary

Multiply the force magnitude by the component of velocity
acting in the direction of F to determine the power supplied
to the body (P=F v cos 0)

In some cases, power may be found by calculating the work
done per unit of time (P = dU/dt)

If the mechanical efficiency of a machine 1s known, either

&h\ga%()wer input or output can be determined i



Conservative forces and potential energy

W. Wang
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APPLICATIONS

The weight of the sacks resting on
this platform causes potential energy
to be stored in the supporting springs.

As each sack 1s removed, the platform
will rise slightly since some of the
potential energy within the springs
will be transformed into an increase
in gravitational potential energy of the
remaining sacks.

If the sacks weigh 100 1b and the equivalent spring constant
is kK = 500 1b/ft, what is the energy stored in the springs?

W. Wang !.



APPLICATIONS (continued)

The young woman pulls the
water balloon launcher back,
stretching each of the four
elastic cords.

If we know the unstretched length
and stiffness of each cord, can we
estimate the maximum height and
the maximum range of the water
balloon when it is released from the
current position? Would we need
to know any other information?

W. Wang -.




APPLICATIONS (continued)

The roller coaster 1s released from rest at the top of the hill A.
As the coaster moves down the hill, potential energy 1s
transformed 1nto kinetic energy.

What 1s the velocity of the coaster when it 1s at B and C?

Also, how can we determine the minimum height of hill A so
that the car travels around both inside loops without leaving

the track?
<>

W. Wang



Theory: Conservative Forces and Potential En. (14.5)

» aforceis called “conservative” if the work of that force is independent of path and instead
depends only upon the starting and ending points on the path

 (weight of a particle and spring force are both conservative forces

e potential energy is the@?munt of work a conservative force can c@When it moves from a given
position in the datum (the capacity to do work...)

e gravitational potential energy is related to the vertical location of a particle:

= : w’aﬁ&#ft
= Wy [V potentied evecgs)

e elastic potential energy is related to spring deformation:

—_ 2
vc.* Z.ﬁ

——t— Datum

O

Frictional force is a non-conservative force because it
depends on the path.

W. Wang 52
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Potential energy due to gravity

The potential function (formula) for a gravitational force, e.g., weight
(W =mg), 1s the force multiplied by its elevation from a datum (a fixed
starting point). The datum can be defined at any convenient location

Vo= +Wy

-
+y

— Datum

V, Is positive if y Is above the
datum and negative if y is
below the datum. Remember,
YOU get to set the datum

53



Elastic potential energy

Recall that the force of an elastic spring is F = ks. It is important to
realize that the potential energy of a spring, while 1t looks similar, 1s a

different formula

Unstretched
position, s = 0

V. (where ‘e’ denotes an elastic
spring) has the distance ““s” raised
to a power (the result of an
integration) or

_ 1.
V, = 5 ks
Notice that the potential
function V, always yields

positive energy

54



Theory: The Potential Function

* the potential function is the algebraic sum of the potential energies:
\/ = '\{g 1 V{

e work of a conservative force can therefore be characterized as a change in the potential
function:

U.'--z - V!# Vz—

\ potentsed femadron
S Gt S .

W. Wang V{ \ VL 55



Theory: Conservation of Energy (14.6)

* recall that nonconservative forces are those that are, well, not conservative; a complete
Crm Moh-CAM[

energy expression would then be: UJ e iz, + o
£ Z/? > Vo
non-Con?’f
T #Y, £ = L +V
L

* if only conservative forces (gravity, springs) are present in a problem, then:

.@muﬁ M con SeglA

1l

T, + V 15 e Ve

. -3

e this equation illustrates the trading of one type of energy for another for a particle moving
along a path and acted upon only by conservative forces

W. Wang 56



Conservation of energy
(Section 14.6)

When a particle is acted upon by a system of conservative forces, the
work done by these forces 1s conserved and the sum of kinetic energy
and potential energy remains constant. In other words, as the particle
moves, kinetic energy 1s converted to potential energy and vice versa.
This principle 1s called the principle of conservation of energy and 1s

expressed as

T,+V, =T, +V, =Constant

T, stands for the kinetic energy at state 1 and V, 1s the potential energy
function for state 1. T, and V, represent these energy states at state 2.

Recall, the kinetic energy is defined as T = ¥, mv?
W. Wang 57



An Aside: The Potential Function and V Operator

* we can derive a more general expression for the potential function:

A= F-dr {dr*(wffawy‘?*d*ﬂ)

—_—

F=(Rz+ 3+@L5

w& f et T 0

'|I'--..
.k

W. Wang
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Example: Three Phase Diamagnetic
Levitation Motor

Magnetic restoring force ~ spring

W. Wang 59



W. Wang

Horizontal levitation
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Example

Given: The girl and bicycle
weigh 125 1bs. She moves
from point A to B.

Find: The velocity and the
normal force at B if the
velocity at A 1s 10 ft/s and
she stops pedaling at A.

Plan: Note that only kinetic energy and potential energy due to
gravity (V,) are involved. Determine the velocity at B using the
conservation of energy equation and then apply equilibrium
equations to find the normal force.

W. Wang 61



Example (continued)

Solution:
rﬁ b Placing the datum at B:
1 125 5 1 125  ,
—(—)(10)" +125(30) =—(—)Vv
2(32.2)( ) (30) 2(32.2) .

V, =45.1 ﬁ/S

Equation of motion applied at B:
2

oV
2 F =ma_ m-;

125 (45.1)
32.2 50

N, =2831b

N, —125=

62



EXAMPLE

Given: The 4 kg collar, C, has a
velocity of 2 m/s at A.
The spring constant 1s 400
N/m. The unstretched length of
the spring is 0.2 m.

B Find:  The velocity of the collar at B.

Plan: Apply the conservation of energy equation between A and B.
Set the gravitational potential energy datum at point A or
point B (in this example, choose point A—why?).

W. Wang '.



EXAMPLE (continued)

Solution:

Note that the potential energy at B has two
parts.

Vg =(Vp). T (VB)g

Vz= 0.5(400) (0.5-0.2)*—-4(9.81)0.4
The kinetic energy at B 1s

Ty = 0.5 (4) vy?

Similarly, the potential and kinetic energies at A will be
V,= 0.5(400) (0.1 —0.2)2, T,= 0.5 (4) 22

The energy conservation equation becomes T, + V, =Tz + Vy.
[ 0.5(400) (0.5 —0.2)> —4(9.81)0.4 ] + 0.5 (4) v5°
=[0.5 (400) (0.1 = 0.2)* ]+ 0.5 (4) 2?
= vp = 1.96 m/s <>

W. Wang



CONCEPT QUIZ

1. If the work done by a conservative force on a particle as it

moves between two positions 1s —10 ft-1b, the change in its
potential energy i1s

A) 0 ft-1b. B) -10 ft-1b.
@ +10 ft-Ib. D) None of the above.

2. Recall that the work of a spring is U, , = -%2 k(s,* —s,?) and

can be either positive or negative. The potential energy of a
spring is V = Y2 ks?. Its value is

A) always negative. B) either positive or negative.

@always positive. D) an imaginary number!
W. Wang 1’




Example

Given: The 800 kg roller
coaster car 1s
released from rest

at A.

Find: The minimum height, h, of Point A so that the car travels
around 1nside loop at B without leaving the track. Also find the
velocity of the car at C for this height, h, of A.

Plan: Note that only kinetic energy and potential energy due

to gravity are involved. Determine the velocity at B using the

equation of motion and then apply the conservation of energy

equation to find minimum height h . <>
66

W. Wang



GROUP PROBLEM SOLVING (continued)

Solution:

1) Placing the datum at A:
Tyt Vy=Tg+ Vg

Two
unknowns!!

= 0.5 (800) 0>+ 0
= 0.5 (800) (vg)* —800(9.81) (h—20) (1)
2) Find the required velocity of the coaster at B so it doesn’t
leave the track.

Equation of motion applied at B:
s V2

2 Fn— ma_=m-; 2

800 (9.81) = 800%

= v = 8.578 m/s '-

W. Wang



Example (continued)

Now using the energy
conservation, eq. (1), the
minimum h can be determined.

0.5 (800) 02+ 0=0.5 (800) (8.578)> — 800(9.81) (h — 20)
— h=23.75m

3) Find the velocity at C applying the energy conservation.

T,+V,=T-+ V¢
= 0.5 (800) 0 + 0 =0.5 (800) (v)* — 800(9.81) (23.75)
= V.=21.6 m/s

W. Wang !-



Theory: Projectile Motion (12.6)

*  projectile motion is a special case of erratic motion usually modeled using Cartesian vectors

* it is a special case, because projectiles move in the presence of a constant gravitational
acceleration in one direction (up/down), and (usually) negligible acceleration in another
(horizontally); projectiles are modeled as particles

*  we solve the problem using Cartesian coordinates, in two parts

Y direction X direction

Voy = V sin6 @ V,, =V, cosO

Vi, = V,,* +2aY Ve =V,2

Viy = Vo Tat Vi = Vox
Y=V,, t+1/2 at* X=V_t

Y=172(V Vo)t X=172(V V)t

69
W. Wang



Homework Assignment

Chapter14-71, 77,79, 91, 92 (work on these
problems <- it will appear in 1st midterm)
Chapter15-6,11, 21,42, 54,57

Due next Wednesday !!!

W. Wang 70
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Chapter reviews

Chapter 12:
Chapter 13:
Chapter 14:

Chapter 15:
Chapter 16:
Chapter 17:
Chapter 18:
Chapter 19:

Book chapter reviews give you a good but brief 1dea
W. Wang about each chapter... 7



General exam rules

Midterm exam will consist of 4 questions. 3 questions
must be solved. The 4" question will be a bonus
question.

Sub-questions may include statements of theoretical
definitions

Midterm exam counts for 25%0 of the total mark

Come on time. Since the lecture theatre will be used for
another class at 1:30, there will be no extra time

Calculators with memory are not allowed

W. Wang




Exam 1s on Friday!

Exam will cover materials from Chapter 12, 13 and 14
NW
Be careful of UNITS — Practice
* Solving equations symbolically
Free body diagrams — Resolve forces
Explain why are you doing things
Full marks will be awarded for FULLY explained solutio~-
Do not use random formulae but ONLY the relevant ones @2

READ THE QUESTIONS CAREFULLY

W. Wang % 74




Fix and movable pulleys

Look at direction of supporting forces elative to load before
summing



14-50.

The crate has a mass of 150 kg and rests on a surface for
which the coefficients of static and kinetic friction are

ps = 0.3 and py = 0.2, respectively. If the motor M supplies
a cable force of F = (8% + 20) N, where ¢ is in seconds,

determine the power output developed by the motor when
t=3s.

SOLUTION

Equations of Equilibrium: If the crate is on the verge of slipping, Fr = ps N = 0.3N.
From FBD(a),

+13F, =0; N —150981)=0 N = 14715N
H3F, =0, 03(14715) — 3(82+20) =0 1 =3.9867s

Equations of Motion: Since the crate moves 3.9867 s later, F; = u, N = 0.2N.
From FBD(b),

+ 13F, = ma,; N —150(9.81) =150(0) N = 1471L5N
& SF, = ma,;  02(14715) — 3 (82> + 20) = 150 (—a)
a = (0.160£> — 1.562) m/s?

Kinematics: Applying dv = adt, we have

u 5
f dv = f (016072 — 1.562) dt
0 3.9867 =

v = 1.7045 m/s

Power: Att =5s, F =8 (52] + 20 = 220 N. The power can be obtained using
Eq.14-10.

P =F-v =3(220) (1.7045) = 112497 W = 1. 12 kW Ans.

W. Wang

F .-
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— T ;#L
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N
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Static friction for tipping, wheel turning
and coefficient used when thing just start

to move.

Kinetic friction when thing 1s sliding.

W. Wang
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EXAMPLE I

Given: Projectile is fired with

vy = 150 m/s

| v,=150 m/s at point A.
= N\ Find: The horizontal distance it
\ | travels (R) and the time in
5 the air.

Plan: How will you proceed?

W. Wang -



Given: Projectile 1s fired with
| v,=150 m/s at point A.

Find: The horizontal distance it
travels (R) and the time in

V 150m

the atr.

Plan: Establish a fixed x, y coordinate system (in this
solution, the origin of the coordinate system 1is
placed at A). Apply the kinematic relations in x-
and y-directions.

W. Wang -



Theory: Projectile Motion (12.6)

*  projectile motion is a special case of erratic motion usually modeled using Cartesian vectors

* it is a special case, because projectiles move in the presence of a constant gravitational
acceleration in one direction (up/down), and (usually) negligible acceleration in another
(horizontally); projectiles are modeled as particles

*  we solve the problem using Cartesian coordinates, in two parts

motion motion
Y direction X direction

Voy = V,s1n0 V., =V cos0
Vi, *=V,,* +2aY V.=V 2

Y=V, t+1/2 at? X=V_t

O0X



EXAMPLE Il (continued)

Solution:

1) Place the coordinate system at point A.
Then, write the equation for horizontal motion | ™~ """

where xg =R, x, =0, v,, = 150 (4/5) m/s :J \
Range, R, willbe R=1201t,, b,
R |

2) Now write a vertical motion equation. Use the distance equation.
+T yg=ya+t Vay tap — 0.5 gtyp?
where yg =— 150, y, =0, and v,, = 150(3/5) m/s
We get the following equation: 150 =90t,,+ 0.5 (—9.81) 1,5’

Solving for t,g first, t,, = 19.89 s.
Then, R=120t,5=120(19.89) =2387 m <4

W. Wang



Example

Given: The 800 kg roller
coaster car 1s
released from rest

at A.

Find: The minimum height, h, of Point A so that the car travels
around 1nside loop at B without leaving the track. Also find the
velocity of the car at C for this height, h, of A.

Plan: Note that only kinetic energy and potential energy due

to gravity are involved. Determine the velocity at B using the

equation of motion and then apply the conservation of energy

equation to find minimum height h . <>
82
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GROUP PROBLEM SOLVING (continued)

Solution:

1) Placing the datum at A:
Tyt Vy=Tg+ Vg

Two
unknowns!!

= 0.5 (800) 0>+ 0
= 0.5 (800) (vg)* —800(9.81) (h—20) (1)
2) Find the required velocity of the coaster at B so it doesn’t
leave the track.

Equation of motion applied at B:
s V2

2 Fn— ma_=m-; 2

800 (9.81) = 800%

= v =8.578 m/s gl

W. Wang



Example (continued)

Now using the energy
conservation, eq. (1), the
minimum h can be determined.

0.5 (800) 02+ 0=0.5 (800) (8.578)> — 800(9.81) (h — 20)
— h=23.75m

3) Find the velocity at C applying the energy conservation.

T,+V,=T-+ V¢
= 0.5 (800) 0 + 0 =0.5 (800) (v)* — 800(9.81) (23.75)
= V.=21.6 m/s

W. Wang !-



13-66.

The man has a mass of 80 kg and sits 3 m from the center of
the rotating platform. Due to the rotation his speed is
increased from rest by # = 0.4 m/s%. If the coefficient of
static friction between his clothes and the platform is
ps = 0.3, determine the time required to cause him to slip.

SOLUTION

2R =may; F = 80(04)
E=32N

EEI:man; E|=(80)§

F = ps No = V(EP + ()

0.3(80)(9.81) = \/ (32)% + ((30)%,2

55432 = 1024 + (6400)(%)

» = 2.9575 m/s
dv
ay = E =04
v t

f dv = fﬂ.d drt

1] 0
=04t
29575 =041+
t=739s

W. Wang

80(9.81)N

Fl

—= K
E
N, = B80(9.81)N

Ans.

85



n-t coordinate system

The tangential component of acceleration 1s constant, a, = (a,)..
In this case,
2Fu +2F u =ma +ma,

s=s,+vt+(1/2)(a)t?
V=V, +(a)t
V2 - (Vo)2 + 2(at)c(s o So)

a=vu + (V/p)u,=au +au_

As before, s, and v, are the 1nitial position and velocity of the

particle att =0
W. Wang



2 F. =ma =m( — féz)

> Fy=ma, =m(rf +276)

Position r=ru,

Velocity: v=iu,+10u, . .
Acceleration: a=v=(—100)u, +Q2r6+r0) u,

W. Wang 87



(I) a= constant (Constant acceleration)

The three kinematic equations can be integrated for the special case when
acceleration 1s constant (a = a_) to obtain very useful equations. A
common example of constant acceleration is gravity; i.e., a body freely
falling toward earth. In this case, a. = g = 9.81 m/s* = 32.2 ft/s”

downward. These equations are:
Y b3

> jdﬁ = jdc At yields v=v_ tat

S Z

jdy :J'ﬂ dt  yields s=s tv. tt(1/2)a t?
50 H

> Iv dy = jczc ds yields v*=(v )**2a(s-s)
ﬂo//ia/ —

W. Wang
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