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Planar kinematics of a rigid body

Chapter 16
Chapter objectives

To classify the various types of rigid-body

planar motion

To investigate rigid body translation and

analyze 1t

Study planar motion

Relative motion analysis using translatir

frame of reference

Relative motion analysis using rotating

frame of reference
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Lecture 13

Planar kinematics of a rigid body:

Rigid body motion, Translation, Rotation about a fixed axis

16.1-16.3

W.Wang




Material covered

Planar kinematics of a rigid body :
Rigid body motion
Translation

Rotation about a fixed axis

W.Wang 4



Today’s Objectives

Students should be able to:

Analyze the kinematics of a rigid body
undergoing planar translation or
rotation about a fixed axis

W.Wang



Applications

= i

Passengers on this amusement ride are subjected to
curvilinear translation since the vehicle moves in a circular
path but always remains upright.

If the angular motion of the rotating arms i1s known, how
can we determine the velocity and acceleration experienced
by the passengers?

W];gaonges cach passenger feel the same acceleration?



Applications (continued)

Gears, pulleys and cams, which rotate about fixed axes, are
often used in machinery to generate motion and transmit
forces. The angular motion of these components must be
understood to properly design the system.

How can we relate the angular motions of contacting bodies
that rotate about different fixed axes?

ang
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Rigid body motion (section 16.1)

There are cases where an object cannot be treated as a
particle. In these cases the size or shape of the body must be
considered. Also, rotation of the body about its center of
mass requires a different approach.

For example, in the design of gears, cams, and links in
machinery or mechanisms, rotation of the body 1s an
important aspect in the analysis of motion.

We will now start to study rigid body motion. The analysis
will be limited to planar motion.

A body is said to undergo planar motion when all parts of

the body move alonqg paths equidistant from a fixed plane.
W.Wang 9




Recall

1. Particles:

Definition: A particle is a body of negligible dimensions.

When the dimensions of a body are irrelevant to the description of its motion,
the body can be treated as a particle.
Examples:
(a) An airplane: Yes when analyzing the fleight path from LA to NYC.
No when the plane rotates.
(b) A space shuttle: Yes when analyzing the orbit of the shuttle. No when
the shuttle turns.
(c) Scott Hamilton: Yes when he skates along the rink. No when he does a
double toe-loop.

W.Wang 10



2. Rigid Bodies:

Definition: A rigid body is a body that does not deform and dimensions of
the body are not negligible.

When the deformation is much less than the dimensions of the body to be
analyzed and the dimensions of a body are relevant to the description of its
motion, the body can be treated as a rigid body.

Examples:
(a) An airplane: Yes when analyzing the rotational motion of the airplane.

No when analyzing the vibration of the airplane wings.
(b) The Hubble Telescope: Yes when analyzing the unfolding motion of its
solar panels. No when analyzing the vibration of the thermal gitters.
(c) Scott Hamilton: Yes when he does a double toe-loop. No when
analyzing the contraction of his muscle.

11



3. Differences Between Particles and Rigid Bodies:

Particles > No Rotation > No Moment Equations

Rigid Bodies > Rotation Exists > Moment Equations Are Important.

Therefore. we s he motion of particles first and then rigid bodies.

W.Wang 12



Planar rigid body motion

There are three types of planar rigid body motion.

Fath of rectilinear translation
(a) by

Rotation about a fixed axis General plane motion
{ch (d)
Fig. 16-1
W.Wang 13



Planar rigid body motion (continues)

Fath of rectilinear translation Path of curvilinear translation

Translation: Translation occurs if every line segment on
the body remains parallel to its original direction during the
motion. When all points move along straight lines, the
motion 1s called rectilinear translation. When the paths of
motion are curved lines, the motion is called curvilinear
translation.

W.Wang
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Planar rigid body motion (continues)

Rotation about a fixed axis: In this case, all
the particles of the body, except those on
the axis of rotation, move along circular
paths in planes perpendicular to the axis of
rotation.

General plane motion: In this case, the
body undergoes both translation and
""-ff — rotation. Translation occurs within a
plane and rotation occurs about an axis
perpendicular to this plane.

General plane motion

W.Wang 15



Planar rigid body motion (continues)

Curvilinear translation

General plane motion

An example of bodies
undergoing the three types
of motion is shown 1n this
mechanism.

Fectilinear translation Eotation about a fixed axis

The wheel and crank undergo rotation about a fixed axis. In this
case, both axes of rotation are at the location of the pins and
perpendicular to the plane of the figure.

The piston undergoes rectilinear translation since 1t 1s constrained
to slide 1n a straight line.

The connecting rod undergoes curvilinear translation, since 1t will
remain horizontal as it moves along a circular path.

The connecting rod undergoes general plane motion, as it will both
translate and rotate.

W.Wang



Theory: Translation (16.2)

* all points on a rigid body subject to either rectilinear or curvilinear translation (i.e., no rotation)

move with the same velocity and acceleration
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Rigid body motion — Rotation about a fixed axis
(16.3)

%f When a body rotates about a fixed axis, any
: point P 1n the body travels along a circular path.

|
f The angular position of P 1s defined by O.

T The change 1n angular position, d0, is called the
ot angular displacement, with units of either
radians or revolutions. They are related by
H 1 revolution = 27 radians

Angular velocity, m, 1s obtained by taking the
time derivative of angular displacement:

o = dO/dt (rad/s) +
Similarly, angular acceleration 1s

o = d?0/dt*= dw/dt or .= o(dw/dO) + rad/s?

18




Concept: Rotation about a Fixed Axis (16.3)

* if a body rotates about a fixed axis, then all points on that body follow a circular path

¢ we define several kinematic quantities: l \
.I '..
e angular position 0 =5
do I
* angular displacement 519) AB &':
|
* angular velocity ) CTI:.

e angular acceleration ¢<¢

0{—:(_;_3"-;3

W.Wang




Theory: (Fixed) Rotational Kinematics

* the kinematic expressions for rotation about a fixed axis are similar to those for particles (and
are derived in a similar way)

48  d

W = At of = At

Jd& o odw

Jt = dt =
A

{p{df}: palmj
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Rigid body motion — Rotation about a fixed axis

1S

deq;

acth

ot

W.Wang
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do

(16.3 continued)

If the angular acceleration of the body 1s
constant, @ = o the equations for angular
velocity and acceleration can be integrated
to yield the set of algebraic equations
below.

W =My 1 Ot

0=0,+ oyt + 0.50t

®* = (wg)* + 20 (0 - 05)

0, and o, are the initial values of the body’s
angular position and angular velocity. Note
these equations are very similar to the
constant acceleration relations developed for

the rectilinear motion of a particle.
21



Theory: Special Case--Constant Acceleration

= e

w - U—>¢ '{— a\}e-.t _— o E.LH[c Wb‘{“\’&"’- _ ,ljf,’g
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Rigid body rotation — Velocity of point P

P

The magnitude of the velocity of P is
equal to wr (the text provides the
derivation). The velocity’s direction 1s
tangent to the circular path of P.

In the vector formulation, the magnitude
and direction of v can be determined
from the cross product of @ and r, .
Here r, 1s a vector from any point on the
axis of rotation to P.

V=@ XF,=® XF
The direction of v 1s determined by the

right-hand rule.

23



Theory: Motion of a Point on a Rotating Body

¢ the motion of a particular point on a body can be expressed using vectors

e velocity:

— - - F
1}--: rl:«_}'X'r" wa!’"‘, = WX ¥p

W.Wang ; 24



Rigid body rotation — Acceleration of point P

The acceleration of P is expressed in terms of
its normal (a,) and tangential (@) components.
In scalar form, these are a, = . rand a, = ®’r.

The tangential component, a,, represents the
time rate of change in the velocity's
magnitude. It 1s directed tangent to the path of
motion.

The normal component, a_, represents the time
rate of change in the velocity’s direction. It 1s
directed toward the center of the circular path.

W.Wang 25



Rigid body rotation — Acceleration of point P
(continued)

b Using the vector formulation, the acceleration
of P can also be defined by differentiating the
velocity. (we derived it earlier in week 2)

a=dv/dt=dw/dt x rp + @ x drp/dt

=a XrptT o X (@ Xrp)

It can be shown that this equation reduces to

a=a xr—or=ata,

The magnitude of the acceleration vector 1s a =\/ (a)? + (a,)?

W.Wang 26



Examples: Motion of a Point on a Rotating Body

e acceleration: for rotation about a fixed axis, often expressed using
normal and tangential components

? fr om wﬁfu“fd ,’MJL ﬁéﬂ;dﬁf’

- -\ o ol o= =
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dt
_ Ox S W7
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Acceleration in the n-t coordinate system I

The tangential component of acceleration 1s constant, a, = (a,)..
In this case,

s=s,+v.t+(1/2)(a)t?

Rigid body rotation:
V=V, (@)t
a=a xr—or=ata,

As before, s, and v, are the initial position and velocity of the
particle att =0

W.Wang 28



Then accleration in polar coordinates:

W.Wang

a = v = fu,+ri,+ rug + rbug + roiy
= fu,+10uy + 7Ouy + rlug- 16U,

= (Fu, — r00u, ) +Q2r0uy+rbuy)
(7= i)
|

Rigid body rotation:

a=a xr—o’r=ata,

29



Rotation about a fixed axis - Procedure

Establish a sign convention along the axis of rotation.

If a relationship 1s known between any two of the variables (a.,
o, 0, or t), the other variables can be determined from the
equations: ®=d0/dt o=do/dt o d0=owdo

If o 1s constant, use the equations for constant angular
acceleration.

To determine the motion of a point, the scalar equations v=wmr,

a,=ar a =wr,and a=(a)’+ (a,)* can be used.

Alternatively, the vector form of the equations can be used
(with Z, j, k components).
V=@ XIp=@® X

a=a.‘ta =a xrotw x(w Xr)=a Xr—or
W.Wang t n P ( P) 30



Example

Given: The motor M begins rotating at
o = 4(1 — et) rad/s, where t 1s 1n seconds.
The radu of the motor, fan pulleys, and
fan blades are 1 1n, 4 1n, and 16 1n,
respectively.

I i -
4 —= -
L—r'=ljn

Find: The magnitudes of the velocity and acceleration at point P
on the fan blade whent=10.5 s.

Plan: 1) Determine the angular velocity and acceleration of the
motor using kinematics of angular motion.

2) Assuming the belt does not slip, the angular velocity
and acceleration of the fan are related to the belt’s
velocity.

3) The magnitudes of the velocity and acceleration of
point P can be determined from the scalar equations of

wwag  InOtion for a point on a rotating body. 31



Example (continues)

Solution:

1) Since the angular velocity 1s given as a function of time,
o, = 4(1 —e™), the angular acceleration can be found by

differentiation.
o =do_/dt =4et rad/s?

Whent=0.5s,
®., =4(1 —e¥)=1.5739 rad/s, o, = 4e> =2.4261 rad/s?

2) Since the belt does not slip (and is assumed inextensible),
1t must have the same speed and tangential component of
acceleration at all points. Thus the pulleys must have the
same speed and tangential acceleration at their contact
points with the belt. Therefore, the angular velocities of
the motor (®,,) and fan (o) are related as

v=0m,1,=0;g,=> (1.5739)(1) = 0{4) => o;=0.3935 rad/s
W.Wang 32



Example (continues)

3) Similarly, the tangential accelerations are related as
a, =oa. T =d1r=> (2.4261)(1) = ad(4) = a,=0.6065 rad/s?

4) The speed of point P on the fan, at a radius of 16 1n, 1s now

determined as
vp = 0dp = (0.3935)(16) = 6.30 1n/s

The normal and tangential components of acceleration of point P
are calculated as
a. = (0p)?1p=(0.3935)>(16) = 2.477 in/s?
a, = a1p = (0.6065) (16) = 9.704 in/s?

The magnitude of the acceleration of P can be determined by
a,=V(a,)? + (a,)? =V(2.477)? + (9.704)> = 10.0 in/s?

W.Wang 33




7=, 2™ Given: The motor turns gear A with a

ay =45/ (61 37 €y constant angular acceleration,

a, = 4.5 rad/s?, starting from rest.
The cord 1s wrapped around pulley D
which 1s rigidly attached to gear B.

Find: The velocity of cylinder C and
the distance it travels in 3 seconds.

Plan: 1) The angular acceleration of gear B (and pulley D) can
be related to a.,.

2) The acceleration of cylinder C can be determined by
using the equations of motion for a point on a rotating
body since (a,)p at point P is the same as a..

3) The velocity and distance of C can be found by using
the constant acceleration equations. <>

W.Wang



Solution:

1) Gear A and B will have the same speed and tangential
component of acceleration at the point where they mesh. Thus,

a, =0, =0gly = (4.5)(75) =0az(225) = ag=1.5rad/s?
Since gear B and pulley D turn together, oy = oz = 1.5 rad/s?

2) Assuming the cord attached to pulley D 1s inextensible and
does not slip, the velocity and acceleration of cylinder C will
be the same as the velocity and tangential component of
acceleration along the pulley D.

a. = (a)p = apTp = (1.5)(0.125) =0.1875 m/s> T
W.Wang !



3) Since a,, 1s constant, o, and a- will be constant. The
constant acceleration equation for rectilinear motion can be

used to determine the velocity and displacement of
cylinder C when t =3 s (sy= v, = 0):

v.,=v, ta.t=0+0.1875m/s?(3s) =0.563 m/s T

S, =8yt Vyt+(0.5) ac t?
=0+ 0+(0.5)0.1875m/s?(3s)? =0.844m T

W.Wang



Example

{I'.LFA ]” - 2” rad..l'rﬁ
—

Given: Gear A is given an angular acceleration o= 4t3 rad/s?,
where t 1s 1n seconds, and (®,),= 20 rad/s.

Find: The angular velocity and angular displacement of gear B
whent=2s.

Plan: 1) Apply the kinematic equation of variable angular
acceleration to find the angular velocity of gear A.

2) Find the relationship of angular motion between gear A
and gear B in terms of time and then use 2 s.

W.Wang —



Example (continued)

the kinematic equation

WA t t
f du)AzfaAdt = (oA—ZO:f4t3dt:t4
20 0] 0

— U)A=t4+20

BA L
d9A=fwAdt
0

0

‘ 1
— GAzf (t4+20)dt=§t5+20t
0

When t=2 s, wa= 36 rad/s and 0,= 46.4 rad.




Example (continued)

2) Since gear B meshes with gear A,
Wp Ty = W Ip

= g = 0 (14/ 15) = 04 (0.05/0.15) RPN

A
>
5
=
)

Similarly, 05 =0, (0.05/0.15) TSP sm S

L_--i"uI|I

P
'I:.-r" b ‘;\‘:,
@ I'y = @glp Al
rgs

i
-

Since wa= 36 rad/s and 0,=46.4 rad at t=2 s,

oy =36(0.05/0.15) = 12 rad/s
0, =46.4(0.05/0.15) = 15.5 rad
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Proposal for design project (GROUPS)

what do you mean,
"no extension"??

The €S student finally realizes the meaning of the word “deadline”.

40



Homework Assignment

Chapterl6- 13, 18, 34
Chapterl6- 43,49,50,65,73,91,105,111,114,115

Due next Wednesday !!!

W.Wang
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Planar kinematics of a rigid body
Chapter 16

Chapter objectives

To classify the various types of rigid-body
planar motion

To investigate rigid body translation and
analyze it

Study planar motion

Relative motion analysis using translating
frame of reference

Find instantaneous center of zero velocity

Relative motion analysis using rotating
frameyofseference 13



Lecture 14

Planar kinematics of a rigid body:

Absolute motion analysis, Relative motion analysis: Velocity,
Instantaneous center of zero velocity, Relative motion analysis:
Acceleration

16.4-16.7

W.Wang



Material covered

Planar kinematics of a rigid body :
Absolute motion analysis

Relative motion analysis: Velocity
Instantaneous center of zero velocit

Relative motion analysis:
Acceleration

W.Wang
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Today’s Objectives

Students should be able to:

Determine the velocity and acceleration of a rigid body
undergoing general plane motion using an absolute motion
analysis (16.4)

Describe the velocity of a rigid body in terms of translation
and rotation components (16.5)

Perform a relative-motion velocity analysis of a point on the
body (16.5)

Locate the instantaneous center of zero velocity.

Use the instantaneous center to determine the velocity of any
point on a rigid body in general plane motion (16.6)

Resolve the acceleration of a point on a body into components
of translation and rotation (16.7)

Determine the acceleration of a point on a body by using a
W_]\%infg’e acceleration analysis (16.7) 46




APPLICATIONS

The dumping bin on the truck rotates
about a fixed axis passing through the
pin at A. It 1s operated by the extension
of the hydraulic cylinder BC.

The angular position of the bin can be
specified using the angular position
coordinate #and the position of point C
on the bin is specified using the
coordinate s.

As a part of the design process for the truck, an engineer had to
relate the velocity at which the hydraulic cylinder extends and
the resulting angular velocity of the bin.

W.Wang _



APPLICATIONS (continued)
0 g
5,

A '|

=
2 =

The position of the piston, x, can be defined as a function of
the angular position of the crank, 6. By differentiating x with
respect to time, the velocity of the piston can be related to the
angular velocity, o, of the crank. This 1s necessary when
designing an engine.

The stroke of the piston 1s defined as the total distance moved
by the piston as the crank angle varies from 0 to 180°. How
does the length of crank AB affect the stroke?

W.Wang F



Applications for absolute motion analysis (16.4)
(continues)

The rolling of a cylinder 1s an example of general plane motion.

During this motion, the cylinder rotates clockwise while 1t
translates to the right.

W.Wang 49



APPLICATIONS (continued)

The large window 1s opened using a hydraulic
cylinder AB.

The position B of the hydraulic cylinder rod
is related to the angular position, &, of the
window.

A designer has to relate the translational velocity
at B of the hydraulic cylinder and the angular
velocity and acceleration of the window? How
would you go about the task?

W.Wang “



ABSOLUTE MOTION ANALYSIS
(Section 16.4)

The figure below shows the window using a hydraulic cylinder AB.

The absolute motion analysis method relates
the position of a point, B, on a rigid body
undergoing rectilinear motion to the angular
position, &, of a line contained in the body.

N m Once a relationship in the form of sy = £ (0) 1s
. established, the velocity and acceleration of
" point B are obtained in terms of the angular
velocity and angular acceleration of the rigid
body by taking the first and second time
derivatives of the position function.

Usually the chain rule must be used when taking the derivatives
of the position coordinate equation.

W.Wang !



Theory: Absolute Motion Analysis (16.4)

* abody subjected to general plane motion undergoes simultaneous translation and rotation
¢ we often use two coordinates: a position coordinate s and an angular coordinate 6

¢ forinstance, example problem 16.5 ,
il JM e;f mrmb

s = (2m)* 4 (I1m)* = 2(2m)(1m) cos

(‘52: 5<% o O
Y
Ly

(>N

(2)= 285 *i:»CSL)FZS

8 J. i
é(mg 6) -‘-<‘76'1f5~ 5)b * @‘:"’gﬁ = ipe

W.Wang




Absolute motion analysis (16.4)

PROCEDURE FOR ANALYSIS

The absolute motion analysis method (also called the
parametric method) relates the position of a point, P, on a rigid
body undergoing rectilinear motion to the angular position, 0
(parameter), of a line contained 1n the body. (Often this line 1s
a link in a machine.) Once a relationship in the form of s, =
f(0) 1s established, the velocity and acceleration of point P are
obtained 1n terms of the angular velocity, o, and angular
acceleration, o, of the rigid body by taking the first and
second time derivatives of the position function. Usually the
chain rule must be used when taking the derivatives of the
position coordinate equation.

W.Wang '-




Plan:

W.Wang

Example 1 (16.4)

Given: Two slider blocks are connected
by a rod of length 2 m. Also,
vy,=8m/sand a, =0.

Find: Angular velocity, o, and
angular acceleration, o, of the
rod when 6 = 60°.

vy =8 m/s

Choose a fixed reference point and define the position of
the slider A 1n terms of the parameter 0. Notice from the
position vector of A, positive angular position 0 1s
measured clockwise.

54



Example 1 (16.4) continues

Solution:
By geometry, s, =2 cos 0

reference e

S

Using 0 = 60° and v, = 8 m/s and solving for :

® = 8/(-2 sin 60°) = - 4.62 rad/s
(The negative sign means the rod rotates counterclockwise as
point A goes to the right.) Differentiating v, and solving for a.,

By differentiating with respect to time,

A V,=-2 ®sin O

a,=-20sin 0 — 2w’ cos 6 =0
a = - ®*/tan 0 = -12.32 rad/s?

W.Wang 55



Plan:

W.Wang

EXAMPLE 1l

Given: A circular cam is
rotating clockwise
about O with a
constant .

Find: The velocity and
acceleration of the
follower rod A as a
function of 4.

Set the coordinate x to be the distance between O and the
rod A. Relate x to the angular position, 6. Then take time
derivatives of the position equation to find the velocity and
acceleration relationships.



EXAMPLE I
Solution:

Relate x, the distance between O
and the rod, to 0.

X=ecosO+r

Take time derivatives of the

position to find the velocity and acceleration.
x = e(—sinB)0 +
Since r = constant = X = —e(sin0)0O

X = —e(cos 0) 62 —e(sin0)6
Since 0 = constant = ¥ = —e(cos 0)62

Notice that the cam is rotating clockwise. = 0 = — @
Therefore, x = e ®(sinB) and X = e w?(cos0)




EXAMPLE 1lI

(0=
i

Given: Crank AB rotates at a constant velocity of @ = 150 rad/s .

Find: The velocity of point P when &= 30°.

Plan: Define x as a function of @ and differentiate with
respect to time.

W.Wang F



Solution: x,=0.2 cos @+V (0.75)? — (0.2 sin )

vp=-0.20 sin &+ (0.5)[(0.75)?
—(0.2sin 6)?]%3(-2)(0.2sin 6)(0.2cos 6) w

vp=-0.2m sin &—[0.5(0.2)*sin20 ®] N(0.75)> — (0.2 sin &)

At 0=30°, o =150 rad/s and v, = -18.5 ft/s = 18.5 ft/s <«

W.Wang ;



EXAMPLE IV

Given: The hydraulic cylinder AB
shortens at a constant rate
of 0.15 m/s so that
girder G of a bascule
bridge 1s raised.

Find: The angular velocity of the
bridge girder when 0 =60°.

Plan: Set the coordinate s to be distance AB. Then relate s to
the angular position, 8. Take time derivative of this
position relationship to find the angular velocity.

W.Wang F



EXAMPLE 1V
Solution:

Relate s, the distance AB, to 0 applying
the law of cosines to the geometry.

AB?=BC*+AC?*-2(BC)(AC) cos(180-0) o
s? =32+ 52—2(3) (5) cos (180-0) L
= 34— 30 cos (180-0) .
s> =34 +30 cos (0) U U

Take time derivatives of s” to find the velocity, S.
2s$=-30sin(0)0 = 6 = —s35/(15 sin 0)

When 6 =60°= s =—0.15m/s, s =+v34 +30 cos 60 =7 m.

Angular velocity 6 = —(7)(—=0.15)/(15 sin 60) = 0.0808 rad/s
<[>




W.Wang
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Applications for Relative motion analysis:
Velocity (16.5)

As the slider block A moves horizontally to the left with v, it
causes the link CB to rotate counterclockwise. Thus vy 1s directed
tangent to 1ts circular path.

W.Wang 63



APPLICATIONS (continued)

Planetary gear systems are used in
many automobile automatic
transmissions. By locking or
releasing different gears, this
system can operate the car at
different speeds.

How can we relate the angular velocities of the
various gears 1n the system?

W.Wang F



Relatve Mokon

16.4  Absoluite Motion: Coordinales are Hxed 7w space.

16.5 Relative Moton: Coordinales are moving,

) TranSLq{-mﬂ Coovrciinotes
* [F-14 takes off Fvom covrier
* Jump Shots of Midhael Jovrdan

* Missile fired Hom o Je’c -Frahm

(2) Qoi-c«-kv\f) Coovdunates

. ‘Drn.-n3 A Space Needle Restauvrant

¢ Foucault Veadwluw  Why do we need to use relative

motion? Easier way to sdlve
complicated kinemati(é:

W-Wang problem!! | 0

e Sunrise ﬁ Sonsek



Relative motion analysis (16.5)

When a body is subjected to general plane motion, 1t undergoes a
combination of translation and rotation.

:.I'rr-l

i

=2

.rfr..i-

Time f Time § + et

“ Translation— Rotation

Point A is called the base point in this analysis. It generally has a
known motion. The x’-y’ frame translates with the body, but does not

rotate. The displacement of point B can be written:
Disp. due to translation

Djspsgue to translation and rotation Disp. due to rotation ”



Relative motion analysis: Velocity (16.5)

Path of
point A

Y¥B

Path of
point B

Rotation about the
Translation base point A

The velocity at B 1s given as : (drg/dt) = (dr,/dt) + (drg,,/dt) or

V= VAT Vpa

Since the body is taken as rotating about A,

Vo= drg A /dt = @ X 1y,
Here @ will only have a k& component since the axis of rotation

1s perpendicular to the plane of translation.
W.Wang 67



Theory: Relative Motion Analysis (16.5)

another way to characterize this general = translation + rotation motion is to use a moving
coordinate frame

["

« consider a rigid body (bar) AB, whose motion is “genera

« we attach a moving (translating!) reference frame to point A, and look at the rotation of B
around the origin of this moving frame

* the moving reference frame does not rotate

\ A

= tl :
=l A

A . .
p#fslating

‘lerence

Fia
ry
W.Wang () 68 4
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Theory: Relative Motion Analysis (16.5)

e another way to characterize this general = translation + rotation motion is to use a moving
coordinate frame

e consider a rigid body (bar) AB, whose motion is “general”

¢ we attach a moving (translating!) reference frame to point A, and look at the rotation of B
around the origin of this moving frame

+TM5 rm_‘HYg ]
NaoT ‘r‘nﬁ{-l?

rp_:_r? b Y.;i & Y_'E;/ﬁ V'

* the moving reference frame does not rotate

— — Er V
Ve, = \ \ slating Frowa
B A L7 Fronslativg ;
\U’ I'Tanslating
: relerence
pure ?o‘['d-{‘?m
Whg X Vﬂfﬁ
W.Wang ( 69—
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Theory: Position at Two Times

\ . ' '-.\‘ -
“~Translation™ Rotation

W.Wang 70



A/

30°
450~
* A

Relative motion analysis:
Velocity (16.5) continues

Vg = VoA T @ X Igjp

When using the relative velocity equation, points A and B
should generally be points on the body with a known motion.
Often these points are pin connections 1n linkages.

Here both points A and B have
circular motion since the disk
and link BC move 1n circular
paths. The directions of v, and
( w8  vgare known since they are
always tangent to the circular
W.Wang path of motion. 71
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Relative motion analysis:
Velocity (16.5) continues

ﬂ |uu’| ""1”

Yig

_ Mt
VR = VAT @ XFpp

When a wheel rolls without slipping, point A 1s often selected
to be at the point of contact with the ground. Since there 1s no
slipping, point A has zero velocity.

Furthermore, point B at the center of the wheel moves along a
horizontal path. Thus, vz has a known direction, e.g., parallel

WQ.dhe surface. -



Relative motion analysis: Analysis procedure (16.5)

The relative velocity equation can be applied using either a
Cartesian vector analysis or by writing scalar x and y component
equations directly.

Scalar Analysis

Establish the fixed x-y coordinate directions and draw a
kinematic diagram for the body. Then establish the
magnitude and direction of the relative velocity vector vy ,.

Write the equation vy = v, + v/, and by using the kinematic
diagram, underneath each term represent the vectors
graphically by showing their magnitudes and directions

Write the scalar equations from the x and y components of
these graphical representations of the vectors. Solve for

the unknowns.
W.Wang 73



Relative motion analysis: Analysis procedure (16.5)
continues

Vector Analysis

Establish the fixed x-y coordinate directions and draw the
kinematic diagram of the body, showing the vectors v,, vg,
rga and @. If the magnitudes are unknown, the sense of
direction may be assumed.

Express the vectors in Cartesian vector form and substitute
into vg =v,+ @ X rg,x. Evaluate the cross product and
equate respective i and j components to obtain two scalar
equations.

If the solution yields a negative answer, the sense of
direction of the vector 1s opposite to that assumed.

W.Wang 74



Relative motion analysis:
Velocity (16.5) Problem 2

Given: Block A is moving down
at 2 m/s.

\;, Find: The velocity of B at the

? instant 6 = 45°.
.1@'1".

Plan: Establish the fixed x-y directions and draw a kinematic
diagram.

Express each of the velocity vectors in terms of their z,
J, k components and solve vg =v,+ @ X rg),4.

W.Wang 75



Relative motion analysis:
Velocity (16.5) Problem 2 continues
Solution:
VR = VAT @ X Tpja
vpi= -2j+(wkx(0.2sn45i-0.2cos45j))
vgi= -2j+02mwsin45j +02wcos45i

Equating the i and j components gives:

vy = 0.2 o cos 45 4 | \_
0=-2+0.2 o sin 45 o= m\ jo

Solving: }\ "z

o = 14.1 rad/s or w,zg=14.1rad/s k
vg=2m/s orvg=2m/si
W.Wang 76



Given:Roller A 1s moving to
the right at 3 m/s.

Find: The velocity of B at
the instant 8 = 30°.

Plan:

1. Establish the fixed x - y directions and draw a
kinematic diagram of the bar and rollers.

2. Express each of the velocity vectors for A and B
in terms of their I, |, K components and solve vy =

Vo1 @ X Tgp. <>

W.Wang



EXAMPLE I (continued)

Solution:
Kinematic diagram:

Express the velocity vectors in CVN
VB = VAT @ X Iy

_VBj: 3| ‘|'[(Dk><
(-1.5c0s301 +1.5s1in 30] )]
vg]=31-1290]-0.750 i

Equating the | and ] components gives:
0=3-0.75m
v =—1.299 o

Solving: ® =4 rad/s or w=4rad/s k
vg=5.2m/s orVg=-52m/s |

W.Wang “



Given: Crank rotates OA with an
angular velocity of 12 rad/s.

Find: The velocity of piston B

E and the angular velocity of
rod AB.

Plan:

Notice that point A moves on a circular path. The
directions of v, 1s tangent to its path of motion.
Draw a kinematic diagram of rod AB and use

VB = Vo T W * I'gja-

W.Wang —



Solution:

Kinematic diagram of AB: .
Since crack OA rotates with an angular

Vs , s velocity of 12 rad/s, the velocity at A
| | will be: v, =-0.3(12) i=-3.6 i m/s

0.6 m Vi
i 3 ’t}le‘H‘h"\\_.I[

/ Rod AB. Write the relative-velocity
N9, equation:
VB = VAT Wap X I'gja

V] =-3.6 1+ 0,5k % (0.6c0s30° 1 —0.6sin30° | )
Vg] =-3.61+0.5196 0,5 ] T 0.3 0,p |

By comparing the I, | components:
I: 0= -3.6+0.3 w,p = w,g= 12 rad/s

j:Vy‘B;g 0.5196 w,p = Vg =6.24 m/s <



1.

COMCEPT QUIZ

If the disk 1s moving with a velocity at point

O of 15 ft/s and ® = 2 rad/s, determine the f\co‘
velocity at A.
=15 ft/s
A) 0 ft/s B) 4 ft/s
C) 15 ft/s D) 11 ft/s

If the velocity at A 1s zero, then determine the angular
velocity, .

A) 30 rad/s B) 0 rad/s
C) 7.5 rad/s D) 15 rad/s

W.Wang F



Given: The shaper mechanism 1s

125 mm . .
ol o designed to give a slow
\ } cutting stroke and a quick return
45°
D5 to a blade attached to the

slider at C. The link AB 1s rotating

at w5 =4 rad/s.
wap = 4rad/s 751

Al Find: The velocity of the slider block C
when 0 = 60°.

Plan: Notice that link AB rotates about a fixed point A. The
directions of vy 1s tangent to its path of motion. Draw a
kinematic diagram of rod BC. Then, apply the relative
velocity equations to the rod and solve for unknowns.

W.Wang



Example (continued)
Solution:

Since link AB is rotating at @,z = 4 rad/s, the
velocity at point B will be:

vy =4 (300) = 1200 mm/s L)

At 0 = 60°, v, = -1200 cos 30° i + 1200 sin 30°] -
= (-1039 i + 600 j) mm/s

wBrC Notice that the slider block
g X P C has a horizontal motion.

45°

W.Wang F



Solution continued:
Apply the relative velocity equation in

order to find the velocity at C.
Ve = Vg T Wpe X Iy 1y

vei=(-1039 i + 600 j)
+ ope k * (<125 cos 45° i + 125 sin 45° j)

Ve i = (=1039 — 125 oy sin 45°)i + (600 — 125 @y cos 45°)]

Equating the | and ] components yields:
0 =600 — 125 o cos 45°

Opc = 4.8 rad/s
Ve =— 1639 mm/s = 1639 mm/s « <>

W.Wang



W.Wang

85



W.Wang

I might skip 16.6
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Instantaneous center of zero velocity (16.6)

Applications

The instantaneous center (IC) of zero velocity for this bicycle
wheel 1s at the point in contact with ground. The velocity
direction at any point on the rim 1s perpendicular to the line
connecting the point to the IC.

W.Wang 87



APPLICATIONS

(continued)
As the board slides down the wall (to

. ~ B the left), 1t is subjected to general
plane motion (both translation and
rotation).

Since the directions of the velocities
of ends A and B are known, the IC 1s
located as shown.

How can this result help you analyze
other situations?

What 1s the direction of the velocity of the center of gravity of
the board?

W.Wang F



Instantaneous center of zero velocity (16.6)

For any body undergoing planar motion, there always exists a
point in the plane of motion at which the velocity 1s
instantaneously zero (if 1t were rigidly connected to the body).

This point is called the instantaneous center of zero velocity,
or IC. It may or may not lie on the body!

If the location of this point can be determined, the velocity
analysis can be simplified because the body appears to rotate
about this point at that instant.

W.Wang 89



L_ocation of center of zero velocity (16.6)

To locate the IC, we can use the fact that the velocity of a point
on a body 1s always perpendicular to the relative position vector
from the IC to the point. Several possibilities exist.

First, consider the case when velocity v,
of a point A on the body and the angular
velocity @ of the body are known.

In this case, the IC 1s located along the
line drawn perpendicular to v, at A, a
distance

Tac = Va/0 from A. Note that the IC lies
kming v and up and to the right of A since v, must

cause a clockwise angular velocity @
about the IC.

W.Wang 90




L_ocation of center of zero velocity (16.6)
continues

W.Wang

Vic = 0
IC

Location of IC

knowing the directions
of v, and vy

A second case 1s when the lines
of action of two non-parallel
velocities, v, and vg, are
known.

First, construct line segments
from A and B perpendicular to
v, and vg. The point of
intersection of these two line

segments locates the IC of the
body.

91



L_ocation of center of zero velocity (16.6)
continues

tic

rH fIc

Location of IC
knowing v, and vy

A third case 1s when the magnitude and direction of two parallel
velocities at A and B are known.

Here the location of the IC 1s determined by proportional triangles.
As a special case, note that if the body 1s translating only (v, = vp),
then the IC would be located at infinity. Then w equals zero, as

expected.
W.Wang
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Velocity analysis (16.6)

The velocity of any point on a body undergoing general plane
motion can be determined easily once the instantaneous center
of zero velocity of the body 1s located.

Yciic|

/ = s ..
o (E“*

W.Wang

i IC

W Fpjic

Ve = W I'eye

Since the body seems to rotate about the
IC at any instant, as shown 1n this
kinematic diagram, the magnitude of
velocity of any arbitrary pointisv=or,
where r 1s the radial distance from the IC
to the point. The velocity’s line of action
1s perpendicular to its associated radial
line. Note the velocity has a sense of
direction which tends to move the point
in a manner consistent with the angular

rotation direction.
93



Example (16.6)

: Given: The disk rolls without
slipping between two
moving plates.

Vg — 2V —>

20 V=V

Find: The angular velocity of the disk.

Plan: This is an example of the third case discussed in the
lecture notes. Locate the IC of the disk using
geometry and trigonometry. Then calculate the
angular velocity.

W.Wang 04



Example Continues (16.6)

Solution:

Using similar triangles:
x/v = (2r-x)/(2v)
or x = (2/3)r

Therefore m = v/x = 1.5(v/r)

W.Wang



EXAMPLE |

Given: A linkage undergoing
motion as shown. The
velocity of the block, vp,
1S 3 m/s.

Find: The angular velocities
of links AB and BD.

Plan: Locate the instantaneous center of zero velocity of link
BD and then solve for the angular velocities.

W.Wang n



Solution: Since D moves to the right, it causes link AB to
rotate clockwise about point A. The instantaneous center of
velocity for BD 1s located at the intersection of the line
segments drawn perpendicular to vz and v,. Note that vy 1s
perpendicular to link AB. Therefore we can see that the IC 1s
located along the extension of link AB.

W.Wang _



Using these facts,
Igc= 0.4 tan 45° = 0.4 m
Ipc = 0.4/cos 45° = 0.566 m

Since the magnitude of v 1s known,
the angular velocity of link BD can be
found from vp= 0gp I'pc -

Ogp = Vp/Tpc = 3/0.566 = 5.3 rad/s 3

Link AB 1s subjected to rotation about A.

®Oap = Vi/Tga = (Tg10)Opp/Te/a = 0.4(5.3)/0.4 = 5.3 rad/s )
W.Wang F



EXAMPLE Il

Given: The center O of the gear set rolls with v, = 6 m/s.
The gear rack B is fixed.

Find: The velocity of point A on the outer gear.

Plan: Locate the IC of the smaller gear. Then calculate the
velocities at A.

W.Wang —



Solution:

Note that the gear rolls
without slipping. Thus,
the IC 1s at the contact

point with the gear
rack B.

The angular velocity of the wheel can be found from
® = Vo/fore =6/0.3=20rad/s ( Jor )

The velocity at A will be
VA= @O X Fape=(-20)kx(=0.6i+0.3))=(61 +12j) m/s

Vy,=V62%2+122=134m/s
0 = tan!(12/6) = 63.4°




.

W.Wang

When the velocities of two points on a body are equal in
magnitude and parallel but in opposite directions, the IC 1s
located at

A) infinity.
B) one of the two points.

C) the midpoint of the line connecting the two points.
D) None of the above.

When the direction of velocities of two points on a body are
perpendicular to each other, the IC is located at

A) infinity.
B) one of the two points.
C) the midpoint of the line connecting the two points.

D) None of the above.

A




03m_03m, Given: The four bar linkage is
' moving with ocp equal
to 6 rad/s CCW.

Find: The velocity of point E
on link BC and angular
velocity of link AB.

Plan: This is an example of the second case in the lecture notes.
Since the direction of Point B’s velocity must be
perpendicular to AB, and Point C’s velocity must be
perpendicular to CD, the location of the instantaneous
center, I, for link BC can be found.

W.Wang F



Example 111
(continued)

C _ Vi
Link AB B

Link CD
Ve

0.6 m

Ocp = 6 rad/s

D
Ve =0.6(6) =3.6 m/s

Link BC: 0 Q/!I From triangle CBI
v e IB = 0.6/s1n 60° = 0.693 m

; “nc Ve = (IC)mpc
Ne Wge = V/IC =3.6/0.346

30° 0.6m  ve=3.6m/s @sc=10.39rad’s )
W.Wang F

pag IC =0.346 m




vg = (IB)og- = 0.693(10.39) = 7.2 m/s
From link AB, vy 1s also equal to 1.2 ® .

Therefore 7.2 =12 w,g = w0 \g=06 rad/sj

vi, = (IE)og where distance IE =V 0.32 + 0.346% = 0.458 m
Ve = 0.458(10.39) =476 m/s 0 )\

where 0 = tan"'(0.3/0.346) = 40.9°

W.Wang QM



I might skip 16.6

W.Wang 105



Relative motion analysis:
Acceleration (16.7) Applications

In the mechanism for a window,
link AC rotates about a fixed axis
through C, while point B slides 1n a
straight track. The components of
acceleration of these points can be
inferred since their motions are
known.

To prevent damage to the window,
the accelerations of the links must be
limited.

106



APPLICATIONS
(continued)

In an automotive engine, the
forces delivered to the
crankshaft, and the angular
acceleration of the crankshatft,
depend on the speed and
acceleration of the piston.

How can we relate the
accelerations of the piston,
connection rod, and crankshaft
to each other?

W.Wang



Relative motion analysis:
Acceleration (16.7)

The equation relating the accelerations of two points on the
body 1s determined by differentiating the velocity equation
with respect to time.

dvg' [ dw N dvg, 4

dt dt dt

These are absolute accelerations
of points A and B. They are
measured from a set of fixed
X,y axes.

This term 1s the acceleration
of B with respect to A.

It will develop tangential
and normal components.

The result1s ag = a, + (ag/x), + (ag/n),

W.Wang 108



Relative motion analysis:
Acceleration (16.7) continues

Graphically: ag = + (gt (apa)

Path of
point A

_ Path of
point B Translation

Rotation about the
base point A

General plane motion

The relative tangential acceleration component (ag ) 1S (& X rg/a)
and perpendicular to rg),.

. . . 2
The relative normal acceleration component (ag ), 1S (-0~ rg/a)

and the direction 1s always from B towards A.
W.Wang 109



Relative motion analysis:
Acceleration (16.7) continues

Since the relative acceleration components can be expressed

as (ag,,),= 0 x rg s and (ag,), = - ®* rg , the relative
acceleration equation becomes

_ 2
Ag= AT O X Igp - O F'gjp

Note that the last term 1n the relative acceleration equation is
not a cross product. It 1s the product of a scalar (square of
the magnitude of angular velocity, ®?) and the relative
position vector, rg) 4.

W.Wang 110



Theory: Relative Motion, Acceleration (16.7)

* acceleration analysis for general motion also follows the “relative” form, by differentiation of
the relative velocity equation:

VB=VATVpB/A

Ag = a,q T @3/
ISR A 3
a,bagw&} relochive
a% R PP (3, + ag w(rﬂjﬁﬂ N1 rg’ﬁ>
— . ~ —

‘l‘ﬂ'-ua . hnW\--n..D
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Theory: Relative Motion Analysis (16.5)

* another way to characterize this general = translation + rotation motion is to use a moving
coordinate frame

e consider arigid body (bar) AB, whose motion is “general”

e we attach a moving (translating!) reference frame to point A, and look at the rotation of B
around the origin of this moving frame

* the moving reference frame does not rotate Trams lat g’
NoT ?’o‘{'&.{—:?

—;‘(;hﬁ—

-

E-(q V'

\

=

1

ol

\U, Translating
reference

re votetion

pave vEE )/

W.Wang

Fixed reference
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Theory: Acceleration Diagram

BY

I'ranslation Rotation about the
base point A

W.Wang 113



Application of relative
acceleration equation

In applying the relative acceleration equation, the two points used in the
analysis (A and B) should generally be selected as points which have a
known motion, such as pin connections with other bodies.

Fath of B &
i
o F
A | el

__P_'F,,#

+“£ ar

In this mechanism, point B is known to travel along a circular path, so
ay can be expressed in terms of its normal and tangential components.
Note that point B on link BC will have the same acceleration as point B
on link AB.

Point C, connecting link BC and the piston, moves along a straight-line
path. Hence, a 1s directed horizontally.

W.Wang 114



Procedure of analysis (16.7)

Establish a fixed coordinate system.
Draw the kinematic diagram of the body.

Indicate on it a,, ag, @, &, and rg,,. If the points A and B
move along curved paths, then their accelerations should
be indicated in terms of their tangential and normal

components, 1.€., @, = (a,), T (a,), and ag = (ag),+ (ag),.
Apply the relative acceleration equation:

_ 2
Ag = AT O X Fgjp- O Fg)p

If the solution yields a negative answer for an unknown
magnitude, it indicates the sense of direction of the vector

wasOpposite to that shown on the diagram. 115



lu,t — 5m/s? Given: Point A on rod AB has an

vy =6m/s

acceleration of 5 m/s? and a
velocity of 6 m/s at the instant
shown.

4m

Find: The angular acceleration of
the rod and the acceleration at
B at this instant.

Plan:  Follow the problem solving
procedure!

Solution: First, we need to find the angular velocity of the rod
at this instant. Locating the instant center (IC) for
rod AB, we can determine o:
O = Va/Tayc = Va/ (3)=2rad/s

W.Wang F



EXAMPLE I (continued)

Since points A and B both move
along straight-line paths,

dy=2>m jf.\‘r
vy =6m/s

— .51 m/<2
a,=-5)m/s

—a i m/<2
ag=ag | m/s

Applying the relative acceleration equation
ag = a,t 0 X gy — g,
agl=-5]+takx@Bi-4))-223i-4))
agl=-5]+4ai+3aj—(121-16))

W.Wang



EXAMPLE I (continued)

Sowith agi=-5]+4ai+3a]— (12 1-16]), we can solve
for ag and a.
ay =5 .ﬂf By comparing the I, | components;
ag=4a—12
0= 11+3a
Solving:
/g2
ag = -26.7 m/s :)

o = -3.67 rad/s?
W.Wang F



Bodies in contact (16.7)

Consider two bodies in contact with one another without slipping,
where the points in contact move along different paths.

A4 (o) (ag) M

In this case, the tangential components of acceleration will be the
same, 1. €.,
(ay), = (a,), (Which implies ogrg = a1 ).

The normal components of acceleration will not be the same.

a F(dy ), SO Ay 7 Ay
W.Wang ( A)n ( A)n A A 119



Rolling motion (16.7)

Another common type of problem encountered in dynamics
involves rolling motion without slip; e.g., a ball or disk rolling
along a flat surface without slipping. This problem can be
analyzed using relative velocity and acceleration equations.

y
Path of point A

v
."'f
ey RS FJ. e s s e

(
Path of point G

" 4

i
\ U/

As the cylinder rolls, point G (center) moves along a straight line,
while point A, on the rim of the cylinder, moves along a curved
path called a cycloid. If @ and a are known, the relative velocity
and acceleration equations can be applied to these points, at the

instant A 1s in contact with the ground.
W.Wang
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Rolling motion (16.7) continues

Velocity: , , .
Y Since no slip occurs, v, = 0 when A 1s in contact

with ground. From the kinematic diagram:
VG = VAT @ XFga
Vol =0+ (-0 k) x (1))
Vg=Or Or v;=Ori

Since G moves along a straight-line path, a 1s
horizontal. Just before A touches ground, its
velocity 1s directed downward, and just after
contact, its velocity 1s directed upward. Thus,
point A accelerates upward as it leaves the ground.
AG= a5+ AX TG — OFg = agi=a,j+ (-0 k) x (1)) — 0*(r))
Evaluating and equating i and j components:

ac=oar and a,=w’r or as=oari and a,=®rj
W.Wang 121




Example (16.7)

Given: The ball rolls without
T slipping.

B Find: The accelerations of
points A and B at this
Instant.

Plan: Follow the solution
procedure.

Solution: Since the ball is rolling without slip, a, is directed to
the left with a magnitude of:

ag = ar = (4 rad/s?)(0.5 ft)=2 ft/s? .

W.Wang E
M



Example continues

Now, apply the relative acceleration equation between points
O and B.
= gt aX rgo— 0%

= -2i + (4k) x (0.5) — (6)*(0.5i)
= (-20i + 2j) ft/s?

= ao+ aXx I’A/O_(Der/O
= -2i + (4k) x (0.50) — (6)%(0.5))
= (-4i — 18j) ft/s?

W.Wang ”



EXAMPLE II

rads’  (Given: The gear with a center
S at O rolls on the fixed
rack.

6
1

Find: The acceleration of point
A at this instant.

Plan:
Follow the solution procedure!

Solution: Since the gear rolls on the fixed rack without slip, a,
is directed to the right with a magnitude of

ag = ar = (6 rad/s?)(0.3 m)=1.8 m/s?.

W.Wang F



EXAMPLE II (continued)

So now with a5 = 1.8 m/s?, we can apply the relative
acceleration equation between points O and A.

Ay =g T O X Iy — 0 10
2, = 1.81 + (-6Kk)x(0.3]) =122 (0.3])
= (3.6 - 43.2)) m/s’ «=6rad

w = 12rad/s

s |

W.Wang 125 l



Proposal for design project (GROUPS)

what do you mean,
"no extension"??

The €S student finally realizes the meaning of the word “deadline”.

W. Wang



Homework Assignment

Chapterl6- 13, 18, 34
Chapterl6- 43,49,50,65,73,91,105,111,114,115

Due next Wednesday !!!
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