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Planar kinetics of a rigid body: Force and acceleration

Chapter 17

Chapter objectives

• Introduce the methods used to determine 
the mass moment of inertia of a body

• To develop the planar kinetic equations 
of motion for a symmetric rigid body

• To discuss applications of these 
equations to bodies undergoing 
translation, rotation about fixed axis, and 
general plane motion

2W. Wang



Lecture 15

• Planar kinetics of a rigid body: Force and acceleration
Moment of Inertia 
- 17.1

3W. Wang



Material covered

• Planar kinetics of a 
rigid body : Force and 
acceleration

Moment of inertia

…Next lecture…17.2 
and 17.3

4W. Wang



Today’s Objectives

Students should be able to:

1. Determine the mass moment of inertia of a rigid body or a 
system of rigid bodies.

5W. Wang
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Moment of Inertia

Moment of inertia is the name given to rotational inertia, the 
rotational analog of mass for linear motion. For a point mass the 
moment of inertia is just the mass times the square of perpendicular 
distance to the rotation axis, I = mr2.W. Wang



The key idea needed in order to understand why the tightrope walker carries 
a long pole to aid balance is moment of inertia. It has nothing to do with 
centre of gravity. The long pole increases the tightrope walker's moment of 
inertia by placing mass far away from the body's centre line (moment of 
inertia has units of mass times the square of distance). 
As a result, any small wobbles about the equilibrium position happen more 
slowly. They have a longer time period of oscillation (the period of small 
oscillations about a stable equilibrium increases as the square root of the 
moment of inertia) and the walker has more time to respond and restore the 
equilibrium. 
Compare how easy it is to balance a one metre ruler on your finger compared 
with a ten centimetre ruler. 7W. Wang



The flywheel on this tractor engine has a large mass moment of 
inertia about its axis of rotation.  Once the flywheel is set into 
motion, it will be difficult to stop.  This tendency will prevent 
the engine from stalling and will help it maintain a constant 
power output.

Applications

8W. Wang



The crank on the oil-pump 
rig undergoes rotation about 
a fixed axis that is not at its 
mass center. The crank 
develops a kinetic energy 
directly related to its mass 
moment of inertia.  As the 
crank rotates, its kinetic 
energy is converted to 
potential energy and vice 
versa.

Applications (continues)

9W. Wang



In Section 17.1, the focus is on obtaining the mass moment 
of inertia via integration!! 

The mass moment of inertia is a measure of an
object’s resistance to rotation.  Thus, the 
object’s mass and how it is distributed both 
affect the mass moment of inertia.  
Mathematically, it is the integral

I =  r2 dm =  r2 dV

In this integral, r acts as the moment arm of the 
mass element and  is the density of the body. 
Thus, the value of I differs for each axis about 
which it is computed.

m

Moment of inertia (17.1)

10W. Wang



The figures below show the mass moment of inertia 
formulations for two flat plate shapes commonly used when 
working with three dimensional bodies.  The shapes are often 
used as the differential element being integrated over the entire 
body.

Moment of inertia (continues) 

11W. Wang



When using direct integration, only symmetric bodies having surfaces 
generated by revolving a curve about an axis will be considered.

Shell element
• If a shell element having a height z, radius r = y, and 

thickness dy is chosen for integration, then the volume 
element is dV = (2y)(z)dy.

• This element may be used to find the moment of inertia 
Iz since the entire element, due to its thinness, lies at the 
same perpendicular distance y from the z-axis.

Disk element
• If a disk element having a radius y and a thickness dz is 

chosen for integration, then the volume dV = (y2)dz.
• Using the moment of inertia of the disk element, we 

can integrate to determine the moment of inertia of the 
entire body.

Procedure of analysis

12W. Wang
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Moment of Inertia: Cylinder
Using the general definition for moment of inertia:

The mass element can be expressed in terms of an infinitesmal radial thickness dr by

Substituting gives a polynomial form integral:

Shell element

W. Wang
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Moment of Inertia: Hollow Cylinder

The expression for the moment of inertia of a hollow 
cylinder or hoop of finite thickness is obtained by the 
same process as that for a solid cylinder. The process 
involves adding up the moments of infinitesmally
thin cylindrical shells. The only difference from the 
solid cylinder is that the integration takes place from 
the inner radius a to the outer radius b:

Still use Shell 
element

W. Wang



Given:The volume shown with  = 5 
slug/ft3.

Find: The mass moment of inertia of this 
body about the y-axis.

Plan: Find the mass moment of inertia of a disk element about 
the y-axis, dIy, and integrate.

Solution: The moment of inertia of a disk about 
an axis perpendicular to its plane is I = 0.5 m r2.  
Thus, for the disk element, we have

dIy = 0.5 (dm) x2

where the differential mass dm =  dV = x2 dy.

slug•ft2873.0
18
(5)dy8

2
dy

2
x4

Iy

1

0

1

0

  y

Example 1

15W. Wang



If the mass moment of inertia of a body about an axis passing 
through the body’s mass center is known, then the moment of 
inertia about any other parallel axis may be determined by using 
the parallel axis theorem,

I = IG + md2

where IG = mass moment of inertia about the body’s mass center
m = mass of the body
d = perpendicular distance between the parallel axes

Parallel-Axis theorem

16W. Wang



Composite Bodies
If a body is constructed of a number of simple shapes, such as 
disks, spheres, or rods, the mass moment of inertia of the body 
about any axis can be determined by algebraically adding 
together all the mass moments of inertia, found about the same 
axis, of the different shapes.

Radius of Gyration
The mass moment of inertia of a body about a specific axis can be 
defined using the radius of gyration (k).  The radius of gyration has 
units of length and is a measure of the distribution of the body’s 
mass about the axis at which the moment of inertia is defined.

I = m k2 or   k =    (I/m)

Parallel-Axis theorem (continues)

17W. Wang



18

For a planar object, the moment of inertia about an axis perpendicular to the 
plane is the sum of the moments of inertia of two perpendicular axes through 
the same point in the plane of the object. The utility of this theorem goes 
beyond that of calculating moments of strictly planar objects. It is a valuable 
tool in the building up of the moments of inertia of three dimensional objects 
such as cylinders by breaking them up into planar disks and summing the 
moments of inertia of the composite disks.

Perpendicular Axis Theorem

W. Wang



The figures below show the mass moment of inertia 
formulations for two flat plate shapes commonly used when 
working with three dimensional bodies.  The shapes are often 
used as the differential element being integrated over the entire 
body.

Moment of inertia (continues) 

19W. Wang
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The perpendicular axis theorem for planar objects can be 
demonstrated by looking at the contribution to the three axis 
moments of inertia from an arbitrary mass element. From the point 
mass moment, the contributions to each of the axis moments of 
inertia are 

Perpendicular Axis Theorem

W. Wang
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The development of the expression for the moment of inertia of a cylinder about a 
diameter at its end (the x-axis in the diagram) makes use of both the parallel axis 
theorem and the perpendicular axis theorem. The approach involves finding an 
expression for a thin disk at distance z from the axis and summing over all such 
disks. 

Moment of Inertia: Cylinder About Perpendicular Axis

W. Wang
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Obtaining the moment of inertia of the full cylinder about a diameter at its end 
involves summing over an infinite number of thin disks at different distances 
from that axis. This involves an integral from z=0 to z=L. For any given disk at 
distance z from the x axis, using the parallel axis theorem gives the moment of 
inertia about the x axis.

Now expressing the mass element dm in terms of z, we can integrate 
over the length of the cylinder.

This form can be seen to be plausible.  You note that it is the sum of the expressions 
for a thin disk about a diameter plus the expression for a thin rod about its end. If you 
take the limiting case of R=0 you get the thin rod expression, and if you take the case 
where L=0 you get the thin disk expression.
The last steps make use of the polynomial forms of integrals!W. Wang
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Common Moments of Inertia

W. Wang



Find: The location of the center of mass G 
and moment of inertia about an axis 
passing through G of the rod 
assembly.

Plan: Find the centroidal moment of inertia for each rod and 
then use the parallel axis theorem to determine IG.

Given:Two rods assembled as shown, with 
each rod weighing 10 lb.

Solution: The center of mass is located relative to the pin at O       
at a distance y, where

1.5 ft

32.2
10

32.2
10

)
32.2
102()

32.2
101(

mi

miyiy 








Example 2

24W. Wang



The mass moment of inertia of each rod about an axis passing 
through its center of mass is calculated by using the equation
I = (1/12)ml2 = (1/12)(10/32.2)(2)2 = 0.104 slug·ft2

The moment of inertia IG may then be calculated by using the 
parallel axis theorem.

IG = [I + m(y-1)2]
OA

+ [I + m(2-y)2]
BC

IG = [0.104 + (10/32.2)(0.5)2] + [0.104 + (10/32.2)(0.5)2]

IG = 0.362 slug·ft2

Example 2 (continues)

25W. Wang



Example

Given: The density () of the 
object is 5 Mg/m3.

Find: The radius of gyration, ky.

Plan: Use a disk element to 
calculate Iy, and then find ky.

Solution: Using a disk element (centered on the x-axis) of radius 
y and thickness dx yields a differential mass dm of

dm = y2  dx = (50x) dx

The differential moment of inertia dIy’ about the y-axis passing 
through the center of mass of the element is

dIy’ = (1/4)y2 dm = 625 x2 dx 26

Disk rotate about y-axis
W. Wang



Example (Cont.)

Using the parallel axis theorem, the differential moment of 
inertia about the y-axis is then
dIy = dIy’ + dm(x2) = (625x2 + 50x3) dx

Integrate to determine Iy:

Iy = 21.67x109 

)(2004)]
4

50()(2003)
3

625
[(50x3)dx(625x2dIyIy

200

0

 

The mass of the solid is

Therefore Iy = 21.67x103 m   and   ky = Iy /m = 147.2 mm

 
200

0

1x106 )2(25)(200(50x)dxdmm

27W. Wang



Homework Assignment

Chapter17- 6, 23, 27,33, 38, 43, 53,  59, 74, 79,95, 
98, 102,109

Due next Wednesday !!! 

28W. Wang
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Composite Bodies example

W. Wang
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Cantilever based sensors and 
actuators

SU8 
Beams

UWMictech

W. Wang
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Resonant frequency of a cantilever beam

5.02 )()875.1(
2

1
eqeq

eqeq
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

Where the equivalents of E, I, , and A are Young’s modoulus, moment of 
inertia (bh3/12), mass density and cross sectional area (bh) of a 
rectangular beam 

b = base of the rectangular cross section and 

h =height of the rectangular cross section

UWMictech

Resonant frequency

W. Wang
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Composite structure

SiO2/Si composite beam
UWMictech

W. Wang
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b1

b2

h2

h1E1

E2

E1

E2

b1

c2

c1

h2

h1

E1

E2 b2

For a composite beam bending along its horizontal axis, the stiffness of 
difference materials can be handled by selecting one layer as a reference 
material and then adjusting the widths of the of the others layer relative to the 
reference material.

Example: the top layer E = 70 GPa and the bottom is 140 GPa & assuming 
both originally have the same width, if the top layer is selected, the bottom 
layer needs to be twice as wide to keep the same bending stiffness if the whole 
beam was made out of just the material of the top layer

Composite beam

W. Wang
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Where the equivalents of E, I, , and A are found by using the method of composite beams [13]. To compensate 
for stiffer or more flexible layers of a composite, this method adjusts the geometry (width only) of each of the 
layers of the composite beam, as illustrated in Figure 8. This allows one to use the one reference value of 
Young’s modulus (labeled E1 for this case) for the entire beam by adjusting the beam’s geometry to 
compensate for having a second Young’s modulus (E2). After adjusting the geometry of the beam, the 
equivalent variables in eq (1) are found by the following formulas: (assuming all layers have rectangular cross 
sections)

where Ei=  Young’s modulus of layer i
Ii= moment of inertia of layer i
Ai= original unadjusted area of layer i
ci=centroid of layer i

W. Wang
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where centroid of the adjusted beam is found by:
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Outlines of ellipses
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Reference for centroid

Based on the actual etching profile, an elliptical shape curve (fig 9) is used to approximate the 
silicon section of the beam. The centroid of the silicon/silicon oxide composite beam is therefore 
equal to,

)
2

(

)12(
0 2

2

abLb

dy
b
yaLy

c

b

silicon 






)2(3
)34(

La
Lab







 
bb

x dy
b
yaLydAyI

0 2

2
2

0

2 )]1(2[ )38(
24
1 3 aLb 

And the moment of inertia of the composite beam with respect to x axis is,

x

y

W. Wang
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Table1.  Resonance frequencies of the SiO2/Si composite levers.

Lever # Thickness/width/length    
(m/m/m)

Observed 
resonant 
frequency 

(kHz)

Calculated
resonant
frequency 

(kHz)

Observed 
Q factor

1
2.2 / 93 / 1500   (SiO2)

30 / 52 / 1500    (Si) 16.90 16.84 260

2
2.2 / 97/ 1500   (SiO2)

31 / 50 / 1500    (Si) 17.77 17.36 296

3
2.2 / 97 / 1000   (SiO2)

30 / 84 / 1000    (Si) 39.62 37.89 514

4
2.2 / 92 / 1000   (SiO2)

33 / 56 / 1000    (Si) 43.10 41.42 540

5
2.2 / 96 / 490   (SiO2)

35 / 59 / 490    (Si) N/A 172.50 N/A

Development of an Optical Waveguide Cantilever Scanner 

W. Wang
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Planar kinetics of a rigid body: Force and 
acceleration
Chapter 17

Chapter objectives
• Introduce the methods used to 
determine the mass moment of 
inertia of a body

• To develop the planar kinetic 
equations of motion for a symmetric 
rigid body

• To discuss applications of these 
equations to bodies undergoing 
translation, rotation about fixed 
axis, and general plane motion 40W. Wang



Lecture 16

• Planar kinetics of a rigid body: Force and acceleration
Planar kinetic equations of motion
Equations of motion: translation

- 17.2-17.3

41W. Wang



Material covered

• Planar kinetics of a 
rigid body : Force and 
acceleration

Planar kinetic equations 
of motion and equations 
of motion when a rigid 
body undergoes 
translation

…Next 
lecture…continue with 
Ch.17

42W. Wang



Today’s Objectives

Students should be able to:
1. Apply the three equations of motion for a rigid body in planar 

motion.

2. Analyze problems involving translational motion.

43W. Wang



Applications

The boat and trailer undergo 
rectilinear motion.  In order to 
find the reactions at the trailer 
wheels and the acceleration of 
the boat at its center of mass,  
we need to draw the FBD for 
the boat and trailer.

=

44W. Wang



Applications (continues)

As the tractor raises the load, the crate will undergo 
curvilinear translation if the forks do not rotate.

45W. Wang



Planar kinetic equations of motion (17.2)

• We will limit our study of planar kinetics to rigid bodies that are 
symmetric with respect to a fixed reference plane.

• First, a coordinate system 
with its origin at an arbitrary 
point P is established.  The 
x-y axes should not rotate 
and can only either be fixed 
or translate with constant 
velocity.

• As discussed in Chapter 16, when a body is subjected to general 
plane motion, it undergoes a combination of translation and 
rotation.  

46W. Wang



• If a body undergoes translational motion, the equation of motion 
is F = m aG .  This can also be written in scalar form as

 Fx = m(aG)x and        Fy = m(aG)y

=

• In words: the sum of all the external forces acting on the body is 
equal to the body’s mass times the acceleration of its mass 
center.

Planar kinetic equations of motion (17.2)
(continued)

47W. Wang



Equation of rotational motion (17.2)

We need to determine the effects caused by the moments of 
the external force system.  The moment about point P can 
be written as

 (ri  Fi) +  Mi =  rG  maG +  IG
 Mp = ( Mk )p

=

where  Mp is the resultant moment about P due to all the 
external forces.  The term (Mk)p is called the  kinetic 
moment about point P.

48

Wont have this equation 
if it’s particle

FBD of external forces and momentsW. Wang



If point P coincides with the mass center G, this equation reduces 
to the scalar equation of  MG = IG .

In words:  the resultant (summation) moment about the mass 
center due to all the external forces is equal to the moment of 
inertia about G times the angular acceleration of the body.

Thus, three independent scalar equations of motion may be used 
to describe the general planar motion of a rigid body.  These 
equations are:  Fx =  m(aG)x

 Fy =  m(aG)y

and  MG =  IG or    Mp =   (Mk)p

Equation of rotational motion (17.2)
(continues)

49W. Wang



When a rigid body undergoes only translation, all the particles of 
the body have the same acceleration so aG = a and  = 0.  The 
equations of motion become:

Note that, if it makes the problem easier, the moment equation 
can be applied about other points instead of the mass center.  In 
this case, 

MA = rG  maG =(m aG ) d .

 Fx  =  m(aG)x

 Fy  =  m(aG)y

 MG =  0

Equations of motion: Translation (17.3)

50W. Wang



When a rigid body is subjected to
curvilinear translation, it is best to 
use an n-t coordinate system.  Then 
apply the equations of motion, as 
written below, for n-t coordinates.

 Fn =  m(aG)n

 Ft  =  m(aG)t

 MG =  0   or

 MB = rG  maG =e[m(aG)t] – h[m(aG)n]

Equations of motion: Translation (17.3)
(continues)

51W. Wang



Problems involving kinetics of a rigid body in only translation 
should be solved using the following procedure:
1. Establish an (x-y) or (n-t) inertial coordinate system and specify 

the sense and direction of acceleration of the mass center, aG.

2. Draw a FBD and kinetic diagram showing all external forces, 
couples and the inertia forces and couples.

3. Identify the unknowns.

5. Remember, friction forces always act on the body opposing the 
motion of the body.

4. Apply the three equations of motion:

 Fx =  m(aG)x       Fy =  m(aG)y          Fn =  m(aG)n      Ft  =  m(aG)t

 MG =  0   or      MP  =   (Mk)P      MG =  0   or    MP  =   (Mk)P

Procedure of analysis

52W. Wang



Example

Given:A 50 kg crate rests 
on a horizontal 
surface for which the 
kinetic friction 
coefficient k = 0.2.

Find: The acceleration of 
the crate if P = 600 N.

Plan: Follow the procedure for analysis.

Note that the load P can cause the crate either to slide or to 
tip over. Let’s assume that the crate slides.  We will check 
this assumption later.

53W. Wang



Example continues

The coordinate system and FBD 
are as shown.  The weight  of 
(50)(9.81) N is applied at the center 
of mass and the normal force Nc
acts at O.  Point O is some distance 
x from the crate’s center line.  The 
unknowns are Nc, x, and aG .

Applying the equations of motion:

Solution:

 Fx  =  m(aG)x:  600 – 0.2 Nc =  50 aG

 Fy  =  m(aG)y:  Nc – 490.5  =  0
 MG =  0:  -600(0.3) + Nc(x)-0.2 Nc (0.5)  =  0



Nc =  490 N
x  =  0.467 m
aG =  10.0 m/s2

54W. Wang



Example continues

Since x = 0.467 m < 0.5 m, the crate slides as originally 
assumed. 

If x was greater than 0.5 m, the problem would have to be 
reworked with the assumption that tipping occurred.

55W. Wang



EXAMPLE

Given: The cart and its load have a 
total mass of 100 kg and 
center of mass at G.  A force 
of P = 100 N is applied to 
the handle.  Neglect the 
mass of the wheels.

Find: The normal reactions at each of the two wheels at A and B.

Plan: Follow the procedure for analysis.

56W. Wang



EXAMPLE (continued)

Solution: The cart will move along a rectilinear path. 
Draw the FBD and kinetic diagram.  

Apply the equation of motion in the x-direction first:

  Fx =  m(aG)x
100 (4/5) =  100 aG
aG = 0.8 m/s2

+

=

57W. Wang



+↑  Fy =  0   NA + NB –981 –100 (3/5) =  0
NA + NB =  1041 N           (1)

Using Equations (1) and (2), solve for the reactions, NA and NB
NA =  430 N  and   NB =  611 N

Then apply the equation of motion in the y-direction and sum 
moments about G.

EXAMPLE (continued)

=

+  MG  =  0 
 NA(0.6) – NB(0.4) + 100(3/5) 0.7– 100(4/5)(1.2-0.5) = 0

0.6 NA − 0.4 NB = 14  N m      (2)

58W. Wang



CONCEPT QUIZ

A

B1. A 2 lb disk is attached to a 
uniform 6 lb rod AB with a 
frictionless collar at B.   If the 
disk rolls without slipping, select 
the correct FBD.

6 lb
2 lb

Na

Nb

Fs

8 lb

Na

Nb

6 lb
2 lb

Na

NbA) B) C)

Fs

59W. Wang



CONCEPT QUIZ

A

B2. A 2 lb disk is attached to a 
uniform 6 lb rod AB with a 
frictionless collar at B.  If the disk 
rolls with slipping, select the 
correct FBD.

6 lb
2 lb

Na

Nb

k Na

8 lb

Na

NbA) B) C)

6 lb
2 lb

Na

Nb

s Na
Fk

60W. Wang



Example

Given: The lift truck has a mass of 
70 kg and mass center at G. It 
lifts the 120-kg spool with an 
acceleration of 3 m/s2. The 
spool’s mass center is at C.
You can neglect the mass of 
the  movable arm CD.

Find: The normal reactions at each of the four wheels.

Plan: Follow the procedure for analysis.

61W. Wang



Example (continued)

Solution: Draw FBD and kinetic diagram. 

=

Applying the equations of motion:

+    MB  =   (Mk)B

 70(9.81)(0.5) + 120(9.81)(0.7) − 2 NA(1.25) = -120(3)(0.7)
NA = 568 N 

62

Summation of moment about B
 (ri  Fi) +  Mi =  rG  maG +  IG

W. Wang



Example (continued)

=

+↑  Fy = m(aG)y

 2 NA + 2 NB –120(9.81) – 70 (9.81) =  120 (3)
2 NA + 2 NB =  2224 N  

Since NA = 568 N, NB = 544 N
63W. Wang



Homework Assignment

Chapter17- 6, 23, 27,33, 38, 43, 53,  59, 74, 79,95, 
98, 102,109

Due next Wednesday !!! 

64W. Wang
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Planar kinetics of a rigid body: Force and 
acceleration
Chapter 17

Chapter objectives

• Introduce the methods used to determine 
the mass moment of inertia of a body

• To develop the planar kinetic equations 
of motion for a symmetric rigid body

• To discuss applications of these 
equations to bodies undergoing 
translation, rotation about fixed axis, and 
general plane motion
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Lecture 18

• Planar kinetics of a rigid body: Force and acceleration
Equations of Motion: Rotation about a Fixed Axis
Equations of Motion: General Plane Motion

- 17.4-17.5
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Material covered

• Planar kinetics of a 
rigid body : Force 
and acceleration

Equations of motion

1) Rotation about a 
fixed axis

2) General plane motion 

…Next lecture…Start 
Chapter 18
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Today’s Objectives

Students should be able to:

1. Analyze the planar kinetics of a rigid body undergoing rotational 
motion

2. Analyze the planar kinetics of a rigid body undergoing general plane 
motion
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Applications (17.4)

The crank on the oil-pump rig 
undergoes rotation about a fixed axis, 
caused by the driving torque M from a 
motor.

If the motor exerts a constant torque M on 
the crank, does the crank turn at a constant 
angular velocity?  Is this desirable for such 
a machine?

As the crank turns, a dynamic reaction 
is produced at the pin.  This reaction is 
a function of angular velocity, angular 
acceleration, and the orientation of the 
crank.

Pin at the center of 
rotation.
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APPLICATIONS (continued)

The pendulum of the Charpy 
impact machine is released from 
rest when  = 0°.  Its angular 
velocity () begins to increase.

Can we determine the angular 
velocity when it is in vertical 
position?  

On which property (P) of the 
pendulum does the angular 
acceleration () depend?  

What is the relationship between P 
and ?
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The “Catherine wheel” is a 
fireworks display consisting of a 
coiled tube of powder pinned at its 
center.

As the powder burns, the mass of powder 
decreases as the exhaust gases produce a 
force directed tangent to the wheel.  This 
force tends to rotate the wheel.

Applications (17.4) (continued)
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 Fn = m (aG)n = m rG 2

 Ft = m (aG)t = m rG 
 MG = IG 

Since the body experiences an angular acceleration, its inertia 
creates a moment of magnitude IG equal to the moment of 
the external forces about point G.  Thus, the scalar equations 
of motion can be stated as:

When a rigid body rotates about a fixed axis 
perpendicular to the plane of the body at 
point O, the body’s center of gravity G moves 
in a circular path of radius rG. Thus, the
acceleration of point G can be represented by 
a tangential component (aG)t = rG and a
normal component  (aG)n = rG2.

Equations of motion for pure rotation (17.4)
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Fn = m (aG) n = m rG 2

Ft = m (aG) t = m rG 

MO = IO 

From the parallel axis theorem, IO = IG + m(rG)2, therefore 
the term in parentheses represents IO.  Consequently, we can 
write the three equations of motion for the body as:

Note that the MG moment equation may be replaced by a 
moment summation about any arbitrary point.  Summing the 
moment about the center of rotation O yields

MO = IG + rG m (aG) t = (IG + m (rG)2 ) 

Equations of motion for pure rotation (17.4)
(continues)
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Problems involving the kinetics of a rigid body rotating about 
a fixed axis can be solved using the following process.
1. Establish an inertial coordinate system and specify the sign and 

direction of (aG)n and (aG)t.

2. Draw a free body diagram accounting for all external forces 
and couples.  Show the resulting inertia forces and couple 
(typically on a separate kinetic diagram).

3. Compute the mass moment of inertia IG or IO.

5. Use kinematics if there are more than three unknowns (since 
the equations of motion allow for only three unknowns).

4. Write the three equations of motion and identify the 
unknowns.  Solve for the unknowns.

Procedure of analysis (17.4)
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Given:A rod with mass of 20 kg is rotating at 5 rad/s at the instant 
shown.  A moment of 60 N·m is applied to the rod.

Find: The angular acceleration  and the reaction at pin O when 
the rod is in the horizontal position.

Plan: Since the mass center, G, moves in a circle of radius
1.5 m, it’s acceleration has a normal component toward O 
and a tangential component acting downward and 
perpendicular to rG.  Apply the problem solving procedure.

Example (17.4)
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Using IG = (ml2)/12 and rG = (0.5)(l), we can write:

MO = [(ml2/12) + (ml2/4)] = (ml2/3) where (ml2/3) = IO.

FBD & Kinetic Diagram

After substituting:
60 + 20(9.81)(1.5) = 20(32/3)

Solving: = 5.9 rad/s2

Ot = 19 N

Equations of motion:
+ Fn = man = mrG2

On = 20(1.5)(5)2 = 750 N

+ Ft = mat = mrG
-Ot + 20(9.81) = 20(1.5)

+ MO = IG  + m rG(rG)

Solution:
Example (17.4) continues…
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Given:The uniform slender rod has a 
mass of 15 kg and its mass 
center is at point G.  

Find: The reactions at the pin O and 
the angular acceleration of the
rod just after the cord is cut.

EXAMPLE

Plan: Since the mass center, G, moves in a circle of radius
0.15 m, it’s acceleration has a normal component toward 
O and a tangential component acting downward and 
perpendicular to rG. 

Apply the problem solving procedure.

G
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EXAMPLE (continued)

FBD & Kinetic Diagram

Equations of motion:
+ Fn = man = mrG2  Ox = 0 N

+  Ft = mat = mrG  -Oy + 15(9.81) = 15(0.15)

+ MO = IG  + m rG(rG)  (0.15) 15(9.81)= IG  + m(rG)2

Solution:

=
rG

Using IG = (ml2)/12 and rG = (0.15), we can write:
IG  + m(rG)2= [(15×0.92)/12 + 15(0.15)2]  1.35 
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EXAMPLE (continued)

After substituting:
22.07 = 1.35  rad/s2

=
rG

From Eq (1) :
-Oy + 15(9.81) = 15(0.15)
 Oy = 15(9.81) − 15(0.15)

FBD & Kinetic Diagram
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CONCEPT QUIZ

2. In the above problem, when  = 90°, the horizontal 
component of the reaction at pin O is __________.
A) zero                          B)  m g
C) m (l/2) 2 D)  None of the above

1. If a rigid bar of length l (above) is released 
from rest in the horizontal position ( = 0), 
the magnitude of its angular acceleration is 
at maximum when

A)  = 0                        B)   = 90

C)  = 180 D)   = 0 and 180
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Example
Given: msphere = 15 kg,

mrod = 10 kg.
The pendulum has an 
angular velocity of 3 rad/s 
when  = 45 and the 
external moment of 50 N m.

Find: The reaction at the pin O 
when  = 45.

Plan:
Draw the free body diagram and kinetic diagram of the 
rod and sphere as one unit.

Then apply the  equations of motion.
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Example (continued)

Solution:  FBD and kinetic diagram;

Equations of motion: Fn = m(aG)n

On 10 (9.81) cos45 15 (9.81) cos45 = 10(0.3)2 + 15(0.7)2

Since  = 3 rad/s   On = 295 N

=45 45
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Ft = m(aG)t
Ot +10 (9.81) sin45 +15 (9.81) sin45 = 10(0.3) + 15(0.7)
 Ot = -173.4 + 13.5 

Example (continued)

MO = Io
10 (9.81) cos45 (0.3) + 15 (9.81) cos45 (0.7) + 50

= [(1/3) 10 (0.6)2]rod  [(2/5) 15 (0.1)2 + 15 (0.7)2]sphere 
  = 16.7 rad/s2 

=45 45
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Example (continued)

=45 45
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Applications (17.5)

As the soil compactor accelerates 
forward, the front roller experiences  
general plane motion (both translation 
and rotation).

The forces shown on the 
roller’s FBD cause the 
accelerations shown on the 
kinetic diagram.=
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During an impact, the center of gravity of this crash dummy will 
decelerate with the vehicle, but also experience another 
acceleration due to its rotation about point A.
How can engineers use this information to determine the forces 
exerted by the seat belt on a passenger during a crash?

Applications (17.5) (continued)
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When a rigid body is subjected to external 
forces and couple-moments, it can 
undergo both translational motion as well 
as rotational motion.  This combination is 
called general plane motion.

 Fx = m (aG)x

 Fy = m (aG)y

 MG = IG 
P

Using an x-y inertial coordinate 
system, the equations of motions about 
the center of mass, G, may be written 
as

General plane motion (17.5)
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Sometimes, it may be convenient to write 
the moment equation about some point P 
other than G.  Then the equations of 
motion are written as follows.

 Fx = m (aG)x

 Fy = m (aG)y

 MP =  (Mk )=IG + rG m (aG) t=(IG + m (rG)2 ) 

P In this case,  (Mk )P represents the sum of the 
moments of IG and maG about point P.

General plane motion (17.5) continues…
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When analyzing the rolling motion of wheels, cylinders, or disks, 
it may not be known if the body rolls without slipping or if it 
slides as it rolls.

For example, consider a disk with mass m 
and radius r, subjected to a known force P.

The equations of motion will be
 Fx = m(aG)x => P - F = maG

 Fy = m(aG)y =>   N - mg = 0
 MG = IG =>   F r  = IG

There are 4 unknowns (F, N, and aG) in 
these three equations.

Frictional rolling problems
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Hence, we have to make an assumption 
to provide another equation.  Then we 
can solve for the unknowns.  

The 4th equation can be obtained from
the slip or non-slip condition of the disk.

Case 1:
Assume no slipping and use aG =r as the 4th equation and
DO NOT use Ff = sN. After solving, you will need to verify 
that the assumption was correct by checking if Ff  sN.
Case 2:
Assume slipping and use Ff = kN as the 4th equation.  In 
this case, aG  r.

Frictional rolling problems (continued)

93W. Wang



Problems involving the kinetics of a rigid body undergoing 
general plane motion can be solved using the following procedure.
1. Establish the x-y inertial coordinate system.  Draw both the 

free body diagram and kinetic diagram for the body.

2. Specify the direction and sense of the acceleration of the 
mass center, aG, and the angular acceleration  of the body. 
If necessary, compute the body’s mass moment of inertia IG.

3. If the moment equation Mp= (Mk)p is used, use the 
kinetic diagram to help visualize the moments developed by 
the components m(aG)x, m(aG)y, and IG

4. Apply the three equations of motion.

Procedure of analysis (17.5)
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6. Use kinematic equations as necessary to complete the 
solution.

5. Identify the unknowns. If necessary (i.e., there are four 
unknowns), make your slip-no slip assumption (typically no 
slipping, or the use of aG r, is assumed first).

Key points to consider:
1. Be consistent in assumed directions.  The direction of aG

must be consistent with .
2. If Ff = kN is used, Ff must oppose the motion. As a test, 

assume no friction and observe the resulting motion. This 
may help visualize the correct direction of Ff.

7. If a slip-no slip assumption was made, check its validity!!!

Procedure of analysis (17.5) continues…

95W. Wang



Find: The angular acceleration () of the spool. 

Plan: Focus on the spool.  Follow the solution procedure (draw 
a FBD, etc.) and identify the unknowns.

Given: A spool has a mass of 8 kg and a radius of gyration (kG) 
of 0.35 m.  Cords of negligible mass are wrapped around 
its inner hub and outer rim.   There is no slipping.

Example (17.5)
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The moment of inertia of the spool is
IG = m (kG)2 = 8 (0.35)2 = 0.980 kg·m 2

Method I
Equations of motion:
Fy = m (aG)y

T + 100 -78.48 = 8 aG
MG = IG 

100 (0.2) – T(0.5) = 0.98 
There are three unknowns, T, aG, We need one more equation 
to solve for 3 unknowns. Since the spool rolls on the cord at point 
A without slipping, aGr.  So the third equation is:   aG 0.5

Solving these three equations, we find: 
10.3 rad/s2, aG 5.16 m/s2, T = 19.8 N

Solution:
Example (17.5) continues
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Method II
Now, instead of using a moment 
equation about G, a moment equation
about A will be used. This approach will 
eliminate the unknown cord tension (T).

Using the non-slipping condition again yields aG = 0.5.

 MA=  (Mk)A:  100 (0.7) - 78.48(0.5) = 0.98 + (8 aG)(

Solving these two equations, we get
 = 10.3 rad/s2, aG = 5.16 m/s2

Example (17.5) continues
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Homework Assignment

Chapter17- 6, 23, 27,33, 38, 43, 53,  59, 74, 79,95, 
98, 102,109

Due  Wednesday !!! 
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