Infectious
Disease
and the
Environment

Jessica Brownell
Ph.D. Candidate
Pathobiology/Global Health; UW

Infectious (Communicable) Disease:

Diseases caused by **pathogenic microorganisms** (bacteria, viruses, parasites, fungi, prions) that can be **spread**, **directly or indirectly, from one person to another**.

Zoonotic diseases are infectious diseases of animals that can spread and cause disease in humans.

Infectious Diseases Impacted History...

...and Still Impact Our World Today

Beyond the Headlines

Beyond the Headlines

Global Burden of Infectious Disease

Annual Mortality and Morbidity Due to Selected Infectious Diseases 1-6		
Disease(s)	Deaths	DALYsa
Lower Respiratory Infections	4.2 million	94.5 million
Diarrheal Diseases	2.2 million	72.8 million
HIV/AIDS	1.8 million	58.5 million
Tuberculosis	1.3 million	34.2 million
Malaria	781 thousand	34.0 million
Measles	164 thousand	14.8 million
Neglected Diseases ^b	173-547 thousand	18.1-57.1 million
Sexually Transmitted Infections ^C	128 thousand	10.4 million
Polio	1 thousand	34 thousand
Other Infectious Diseases ^d	1.9 million	69 million

Disability-adjusted life years, the years of healthy life lost due to disability, sickness or premature mortality. Estimates are for 2004.

- b Includes: African trypanosomiasis, Chagas disease, schistosomiasis, leishmaniasis, lymphatic filariasis, onchocerciasis, dengue, ascariasis, trichuriasis, and hookworm.
- c Excludes HIV/AIDS.
- d Includes: pertussis, diphtheria, tetanus, meningitis, hepatitis B, hepatitis C, Japanese encephalitis, maternal sepsis, and neonatal infections.

Other Impacts of Infectious Disease

Agricultural Impacts

- Plant diseases
 - Tobacco Mosaic Virus
 - Grey vs. Noble rot (Botrytis cinerea)
- Animal Diseases
 - Mad Cow Disease
 - Colony Collapse Disorder?

Terminology

Pathogen: A pathogenic microorganism

- Primary Pathogen: Causes disease within a normal, healthy host
- Opportunistic Pathogen: Only causes disease in hosts with compromised immune systems

Infection: Growth of the agent within a host

Disease: Cell/tissue damage and loss of health

Types of Infectious Pathogens

Bacteria

Eukaryotic

Viruses

Other?

Bacteria (Prokaryotes)

- Single-celled, free-living organisms
- 0.2 to 2.0 μ m \rightarrow Can be seen in a microscope
- Can be intracellular (live within a host cell) or extracellular (live outside a host cell)
- Circular DNA genome
- No organelles (nuclei, Golgi, etc).

Identifying Bacteria - The Gram Stain

Some "non-staining" bacteria – Spirochetes (Syphillis) and Mycobacteria (Tuberculosis)

Viruses

- RNA or DNA packaged in a protein coat.
- Small 20 to 300 nm (Cells = 10 100x bigger)
- Obligate intracellular pathogens
 - Takes over the machinery of the host cell
 - Generates new viruses from information in viral DNA or RNA.
- Not alive no metabolic activity.

Generalized Virus Life Cycle:

<u>Lytic Cycle:</u> Replication/Cell Death

<u>Lysogenic Cycle:</u> Integration/Dormancy

DNA > DNA

Example: Herpes

Examples: Influenza Hepatitis C

Adapted from website of FA Murphy, School of Veterinary Medicine, UC Davis

 $RNA \rightarrow DNA \rightarrow RNA$

Example: HIV

Eukaryotic Pathogens

- Single-celled or multi-celled
- Intracellular or extracellular
- Similar to our cells have a nucleus and other organelles (mitochondria, etc)

Candida albicans

Plasmodium (Malaria)

Guinea Worm

Other

Prions

- Proteinacous infectious particles without nucleic acids
 - Malformed version of the neural protein PrP
 - Can convert normal protein to abnormal form
- Malformed proteins form aggregates ("plaques")
- Neuron death → Symptoms

Examples: Mad Cow, variant Creuzfeld-Jacob Disease (vCJD)

Airborne

How Pathogens Spread ©Touchstone Pictures. All Rights Reserved

Foodborne/ Waterborne

Sexually-Transmitted

Bloodborne

Insects (Vectors)

Bubble Boy, 2001

Airborne

Pathogens spread via droplets in the air

Infection occurs through mucous membranes

- 1) Inhalation
- 2) Surface-to-Face

Examples: Influenza, Common Cold, Smallpox,

Tuberculosis

Sexually-Transmitted

Pathogens spread during sexual activity (vaginal, oral, or anal)

Some also considered bloodborne (HIV, Hepatitis B)

Other examples: Syphilis, Gonorrhea, HPV

Bloodborne

Pathogens spread through contaminated blood

Routes of exposure: Shared needles, transfusions (pre-screening), open wounds/needlesticks

Examples:
HIV
Hepatitis B
Hepatitis C

Hepatitis C: Screening the Blood Supply

Blood collection begins in the 1940's in USA Large demand for blood for heart surgery etc. 1970's: Recognition of non-A non-B hepatitis (Hepatitis C)

Incidence of acute Hepatitis C USA, 1982-2009

Foodborne/Waterborne

Food or water contaminated by pathogens

Generally gastrointestinal symptoms

Food Contaminants	Water Contaminants
<i>E. Coli</i> Hepatitis A Virus	Ghiardia Cholera
Salmonella	Hepatitis E Virus

Recent Outbreaks:

- Oct 2010: Haiti (Cholera)
- Sept 2011: Cantaloupe (*Listeria*)

Insects (Vectors)

Transmitted between humans or from a reservoir to a human via an infected insect (fly, mosquito etc)

Examples: Malaria, Lyme Disease, West Nile Virus

Global Patterns of Disease

Infectious disease outbreaks are dynamic

Outbreaks of disease occur at different and changing frequencies

- Endemic: A common infection in a given region (Ex. Malaria in Tanzania, Africa)
- Epidemic: An increase in the number of cases of a disease over that rate usually found. A rapidly spreading new disease.
- Pandemic: Worldwide epidemic

Pathogens are constantly evolving

- New pathogens emerge
- Old pathogens acquire resistance to therapies

New Pathogens are Continually Emerging

Total Known Pathogens Infecting Humans: 1415
48 have been discovered since 1975

Existing pathogens are also continually evolving and expanding to new areas

"Re-emerging" Pathogens

Known pathogens turning up in <u>increased frequency</u> despite previously successful control

Reasons Behind Emerging and Re-emerging Pathogens

- Animal reservoirs
- Climate change
- Microbial resistance and host susceptibility
- Human behavior and migration

Animal Reservoirs

Zoonotic diseases are infectious diseases of animals that can spread and cause disease in humans.

Animals can also serve as "mixing vessels" between strains of a pathogen \rightarrow Generates new strains of existing pathogens

Hantavirus Spread by Deer Mice RNA Virus Cannot be spread between humans

Korean War:
Hemorrhagic
Fever with Renal
Syndrome (HFRS)

1993 Four Corners:

Hantavirus

Pulmonary

Syndrome (HPS)

Birds, Pigs, Influenza, Oh My!

Influenza A RNA Virus - 7 genomic segments

Recombination of segments between viruses leads to new strains

Pigs can carry **Swine**Influenza (H1N1), **Bird** Influenza
(H5N1), and **Human**Influenza viruses

2009 Swine Flu Pandemic

April 2009:

New human H1N1
Influenza found
in Mexico

Combination of NA and Eurasian swine influenzas

Likely circulated for years in domestic pigs being transported between continents

Contagion Pandemic – A Real Virus!

Nipah Virus (RNA Virus, Paramyovirus family)

- Discovered in 1999 → Only 13 documented outbreaks
- Animal-to-human and (rarer) human-to-human transmission
- Effects range from asymptomatic infection to fatal encephalitis

Known Natural Hosts

Climate Change and Vector Range

Dengue Fever

- RNA Virus
- Fever, headache, rash
- Subsequent infections often more serious

Spread by *Aedes* mosquitoes in tropical areas

Global warming → Expanded tropical climates → Expanded mosquito range

West Nile Virus Expansion in USA

Primarily a bird disease but can infect humans Spread by mosquitoes

CDC

NH

ма з

RI

CT 6

NJ 12

DE

MD 6

DC

w۷

Puerto Rico

Microbial Resistance vs. Human Susceptibility

Microbial Evolution

It was on a short-cut through the hospital kitchens that Albert was first approached by a member of the Antibiotic Resistance.

Drug resistance makes pathogens more virulent

Human Immune System

Compromised immunity increases infection risk

Opportunistic Infections in HIV/AIDS

HIV infection causes a decline in CD4+ T cells \rightarrow Main "director" cell of the immune system

Depletion leads to opportunistic infections and death

AIDS Stage	Opportunistic Infection
Pre-AIDS	Candida (Yeast) Shingles (Virus)
AIDS CD4+ < 200 cells/ul blood	Tuberculosis (Bacteria) Pneumocystis (Yeast)
CD4+ < 100 cells/ ul blood	CMV Infection (Virus) Dimorphic fungi infection
CD4+ < 50 cells/ul blood	MAC (Bacteria) Toxoplasmosis (Parasite)

Drug Resistance

Primary (Intrinsic)

Characteristic of the pathogen

Penicillin attacks bacterial cell wall synthesis – gram (-) less susceptible

Secondary (Acquired)

Stable (mutation) or Transient (plasmids)

Drugs DO NOT cause resistance mutations – they select already resistant strains for survival

Practices That Promote Resistance

Drugs in animal feed for growth and disease prevention

- 70% of antibiotics are used in animals

Failure to complete full treatment

- Side effects -> Tuberculosis, Hepatitis C
- Because patient "feels better"

Inappropriate use of drugs

- Antibiotic for cold or influenza viruses

Hospital transmission (MRSA)

Over the counter use in developing countries

International travel

Human Behavior and Migration

Social factors greatly impact pathogen spread/emergence

Natural Disasters Also Lead to Breakdown of Public Health Resources

Famine – Somalia, 2011

Earthquake – Haiti, 2010

Hurricane Katrina – New Orleans, 2005

Lack of available resources (medicine, trained personnel, emergency plans, proper sanitation, etc) make fighting epidemic disease that much harder

Combating Infectious Disease

Major advances over the past 100 years help control the impact of pathogens worldwide

Drugs

- Penicillin → First antibiotic, mass-produced in 1944

Vaccines

- First vaccine: Smallpox → Edward Jenner, 1796 (Eradicated 1979)
- Salk (1955) and Sabin (1962) Polio vaccines

Non-medicinal interventions

- Bednets for malaria prevention
- Promotion of condom use in areas of high HIV/AIDS
- Municipal water chlorination

Surveillance

Monitoring Increases the Chance of Early Outbreak Detection and Intervention

Incidence: Number of new cases

of a disease

Prevalence: *Total number* of cases

of a disease

Morbidity: Illness/Disability

Mortality: Death

DALY: Disability Adjusted Life Years -

measure of total morbidity and

mortality for a disease

Notifiable Conditions and the Washington State Department of Health Health Care Provider

The following conditions are notifiable to local public health authorities in Washington in accordance with WAC 246-101. Timeframes for notification are indicated in footnotes. Immediately notifiable conditions are indicated in bold and should be reported when suspected or confirmed.

Acquired immunodeficiency syndrome (AIDS) 3 (including HIV infection 3 Immunization reactions 3 (severe, adverse) AIDS in persons previously reported with HIV infection) Animal bites Legionellosis 3 Arboviral disease 3 (West Nile virus disease, dengue, Eastern & Leptospirosis 3 Listeriosis 1 Western equine encephalitis, etc.) Lyme disease 3 Botulism (foodborne, wound and infant) Lymphogranuloma venereum 3 Brucellosis Campylobacteriosis 3 Malaria Chancroid 3 Measles (rubeola) Chlamydia trachomatis 3 Meningococcal disease Cholera 1 Mumps 3 Cryptosporidiosis 3 Paralytic shellfish poisoning ' Cyclosporiasis 5 Pertussis 1 Diphtheria 1 Plague 1 Disease of suspected bioterrorism origin (including Anthrax and Poliomyelitis Psittacosis 5 Smallpox) Disease of suspected foodborne origin (clusters only) Q fever 3 Disease of suspected waterborne origin (clusters only) Rabies 1 Rabies post-exposure prophylaxis 3 Enterohemorrhagic E. coli, including E. coli O157:H7 Relapsing fever (borreliosis) infection Giardiasis 3 Rubella (including congenital) Gonorrhea 3 Salmonellosis 1 Granuloma inguinale 3 Shigellosis ' Syphilis 3 (including congenital) Haemophilus influenzae invasive disease Tetanus 3 (under age five years, excluding otitis media) Hantavirus pulmonary syndrome 3 Trichinosis 3 Hemolytic uremic syndrome (HUS) 1 Tuberculosis 1 Hepatitis A, acute Tularemia 3 Hepatitis B, acute 3; chronic M (initial diagnosis only) Typhus 1 Hepatitis B, surface antigen positive pregnant women 3 Vibriosis 3 Hepatitis C, acute and chronic M (initial diagnosis only) Yellow fever Hepatitis, unspecified (infectious) 3 Yersiniosis Herpes simplex, genital (initial infection only) and neonatal 3 Unexplained critical illness or death Rare diseases of public health significance 1 Table 2. Foodborne Outbreaks Reported to Washington State Department of Health, 2009

No.	Month	County	Illness Agent	Total # ill	# Ill lab confirmed	Food Source	Setting	Contributing Factors
1	Jan	{ Multiple }	Salmonella Typhimurium	25	25	Peanut butter	Commercial product	Unknown
2	Jan	{ Multiple }	Salmonella Rissen	3	3	White pepper	Commercial product	Contaminated raw product
3	Feb	Snohomish	Virus*	13		Pea salad	Church	Unknown
4	March	King	Hepatitis A	6	6	Restaurant meal	Restaurant	Infected food handler
5	April	Jefferson	Virus*	10		Restaurant meal	Restaurant	Insufficient handwashing
6	May	{ Multiple }	E. coli O157:H7	5	5	Cookie dough	Commercial product	Contaminated raw product; insufficient initial cooking time/temperature
7	June	Stevens	Norovirus	13	6	Ill food worker	Restaurant	Bare-handed contact
8	June	Clallam	Virus*	56		Potato salad	Group camp	Unknown
9	June	{ Multiple }	Salmonella Muenchen	4	4	Sandwiches	Cafeteria/Deli	Unknown
10	June	King	Virus*	2		Salad	Restaurant	Infected worker
11	June	{ Multiple }	Salmonella Newport	6	6	Burritos	Restaurant	Unknown
12	June	King	Virus*	4		Restaurant meal	Restaurant	Bare-handed contact; infected worker; storage in contaminated environment
13	June	Clark	Scombroid poisoning	3		Fish	Food Market	Toxic substance part of tissue
14	July	Clark	Salmonella Enteritidis	54	15	Eggs	Camp	Contaminated raw product; process failures that permit pathogen survival
15	July	Chelan	Norovirus	7	2	Take out meal	Workplace	Ill food worker
16	July	King	Bacillus cereus	15	1	Pasta	Catered event	Food preparation practices that support proliferation of pathogens; improper cold holding; slow cooling
17	July	{ Multiple }	Salmonella Typhimurium	26	26	Lettuce	Commercial product	Contaminated raw product
18	July	King	Salmonella	17	9	Restaurant meal	Restaurant	Contaminated raw product; cross-contamination of ingredients; bare-handed contact; contaminated storage environment
19	July	King	Chemical ingestion	2		Unidentified chemical	Restaurant	Poisonous substance inadvertently added
20	August	King	Salmonella Enteritidis	2	2	Eggs	Restaurant	Cross-contamination of ingredients; improper cold holding
21	Sept	Jefferson	Bacterial toxin	5		Pizza	Home delivery	Unknown
22	Sept	King	E. coli O157:H7	2	2	Unidentified	Restaurant	Unknown
23	Sept	King	Virus*	4		Ill food worker	Restaurant	Cross-contamination of ingredients; glove-handed contact by an infected food handler
24	Sept	{ Multiple }	Shiga toxin-producing E. coli	3	3	Raw milk	Dairy product	Contaminated raw product
25	Sept	King	E. coli O157:H7	4	3	Unidentified	Restaurant	Unknown
26	Oct	Benton	Salmonella Enteritidis	6	6	Pork	Restaurant	Unknown
_27	Nov	King	Virus*	10		Ill food worker	Restaurant	Bare-handed contact; glove-handed contact by an infected food handler

^{*} Agent not lab confirmed

Full 2009 Report: http://www.doh.wa.gov/notify/annlrpt/cdr2009.pdf

ProMed Alerts

International
Society for
Infectious
Diseases
(www.isid.org)

Daily tracking of current outbreaks worldwide

PROMED-MAIL DAILY UPDATE 08-NOV-2011

A ProMED-mail post

http://www.promedmail.org

ProMED-mail is a program of the

International Society for Infectious Diseases

http://www.isid.org

08-Nov-2011

Dengue/DHF update 2011 (44) http://apex.oracle.com/pls/otn/pm?an=20111108.3320

Infectious salmon anemia - Canada (02): (BC)
http://apex.oracle.com/pls/otn/pm?an=20111108.3321

Anthrax, human, bovine - Uganda (02): (Western) http://apex.oracle.com/pls/otn/pm?an=20111108.3322

Avian influenza (68): H5N1 transmissibility to ferrets http://apex.oracle.com/pls/otn/pm?an=20111108.3323

Tularemia, human, possum – Australia (02): (TS), RFI http://apex.oracle.com/pls/otn/pm?an=20111108.3324

Global Incident Map

(For those who enjoy paranoia!)

http://outbreaks.globalincidentmap.com/home.php

FIGURE 1. Crude death rate* for infectious diseases — United States, 1900–1996†

^{*}Per 100,000 population per year.

[†]Adapted from Armstrong GL, Conn LA, Pinner RW. Trends in infectious disease mortality in the United States during the 20th century. JAMA 1999:281;61–6.

[§]American Water Works Association. Water chlorination principles and practices: AWWA manual M20. Denver, Colorado: American Water Works Association, 1973.

Questions?

jlb42@uw.edu