

Entry losses, ducts and hoods

Types of losses

- Friction Losses:
 - Fluid in motion encounters drag along the surface
 - Energy is needed to overcome the drag force
 - The drag force is due to the fluid viscosity
- Dynamic losses
 - Turbulence and eddies in the flow
 - Momentum losses due to change in direction
 - Found in expansions, contractions, elbows, junctions and hood entries

Duct friction losses

- Friction losses H_f are proportional to the kinetic energy in the moving fluid
- Therefore, losses are proportional to Pv
 In general form: Weisbach-Darcy friction eqn:

$$H_f = f \frac{L}{D} P_{V_1}$$

• Losses factor f is function of Pv, Re, and surface roughness

Friction losses

- We use a simplified form where H_f is proportional to Pv and L
- $H_f = F_f P_{V_1} L$
- F_f is determined from charts and figures eg vent manual or curve fitting
- For example in a galvanized straight duct:

$$H_f = 0.38 \frac{L}{D^{1.22}} (P_{V_1})$$

Duct friction losses

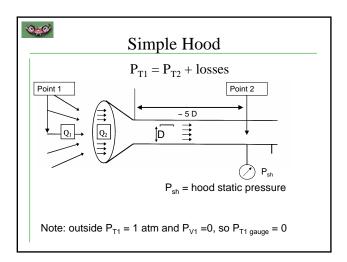
• Friction losses increase linearly with duct length increasing air density, typical form:

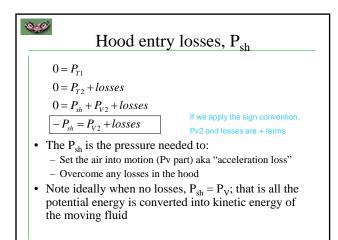
$$H_f = F_f P_{V_1} \frac{L}{100'}$$

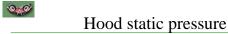
- Losses depend on the duct material and wall roughness
- Losses increase with V²(and also Q²)
- Losses decrease ~ with square of duct area
 - (proportional to $1/A^{2.5}$ but approx $1/A^2$)

Principles of LEV Design

- To protect the worker's breathing zone:
 - the contaminant is captured close to the point of release (local) and removed (exhausted) from work areas
- prevents contaminant migration to other areas
- systems are always mechanical
- volume flow rate is much less than general or dilution ventilation

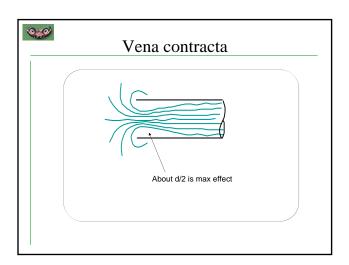

Dynamic Losses - entries


- Hoods are the business end of the capture system
- The hood is the <u>only</u> place where you can capture the contaminant
- · Hoods should
 - Minimize the loss of contaminant into the room
 - Not interfere with the work process
 - Minimize energy losses into the system



Local Exhaust Hoods

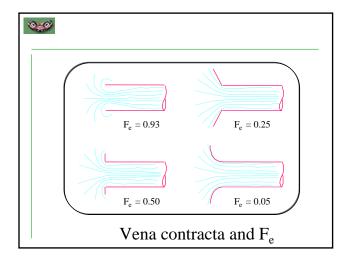
- Purpose
 - Capture and remove contaminant at the source
- Effectiveness determined by
 - Hood configuration & shape
 - The extent to which the hood encloses the contaminant source
 - Cardinal rule: enclose source to the extent possible
 - Amount of air flow into hood (i.e. Q_{hood})



- Other forms: $|P_{sh}| = P_V + losses$
 - The losses are characteristic of the hood shape and are defined as the hood \underline{entry} loss $H_e(e=entry)$

$$|P_{sh}| = P_V + H_e$$

 H_e is caused by dynamic losses and turbulence in the inlet. Air can't follow perfectly into the inlet and contracts to a flow stream that is smaller than the actual duct cross section -- known as the Vena Contracta. This creates turbulence and energy loss



Hood entry losses

- Entry loss is proportional to P_v
- The loss factors have been tabulated for various shapes

$$\begin{aligned} \left| P_{sh} \right| &= P_V + H_e \\ H_e &= F_e P_V \end{aligned} \qquad \begin{aligned} P_{sh} &= P_V + F_e P_V \\ P_{sh} &= P_V (1 + F_e) \\ \frac{P_{sh}}{P_V} &= 1 + F_e \end{aligned}$$

000

Hood Efficiency

- Hood efficiency can be evaluated in terms of the energy loss at the entry
- Say we had a perfect hood, then all potential energy would be converted to kinetic energy
- So: $P_{sh} = P_v + 0$ (no losses)
- If we define Ce as the coefficient of entry

$$C_e = rac{Q_{actual}}{Q_{ideal}}$$
 Actual flow Actual flow with no losses

00

C_e represents efficiency

• Recall Ce = ratio of actual flow to ideal flow

$$C_e = \frac{Q_{actual}}{Q_{ideal}}$$

- $C_e = \frac{Q_{actual}}{Q_{ideal}}$ So: $C_e = \frac{4005\sqrt{P_V} \cdot (area)}{4005\sqrt{P_{Sh}} \cdot (area)} = \sqrt{\frac{P_V}{P_{Sh}}}$
- Ce represents the efficiency of the hood it is unitless and measures how well the hood converts potential energy (P_S) into kinetic energy (P_v) in the flow

C_e is related to F_e

- Recall Fe gives hood loss in terms of P_{ν}

$$\frac{P_{sh}}{P_V} = 1 + F_e$$

- So if: $C_e = \sqrt{\frac{P_V}{P_{Sh}}}$ then $C_e^2 = \frac{1}{[1 + F_e]}$
- So the efficiency of the hood is directly related to the flow rate, and the square of the efficiency is a measure of the entry loss factor

Efficiency for different hoods

- C_e depends on the hood geometry
- Unlike H_e it does not depend on Q the flow rate

HOOD TYPE	DESCRIPTION	COEFFICIENT OF ENTRY, Ge	ENTRY LOSS
0.00	PLAIN OPENING	0.72	0.93 VP
0.0	FLANGED OPENING	0.82	0.49 VP
A. T.	TAPER or CONE HOOD	Varies with angle of taper or cone. See Fig. 6-10	
<u></u>	BELL MOUTH INLET	0.98	0.04VP

In class example

• Find P_{sh} and C_e for a plain end duct with V=2000 fpm (assume no friction loss and NTP)

Concept of capture velocity

- Capture velocity: the velocity at a point in front of the hood, that is needed to oppose room air currents and capture the contaminants
- It is an old concept that only partially works
- Ignores:
 - Mass generation at source
 - Turbulence at the inlet
- · Still widely used
- Many formulas for different shapes
- DallaValle equations are an example

Hood Design

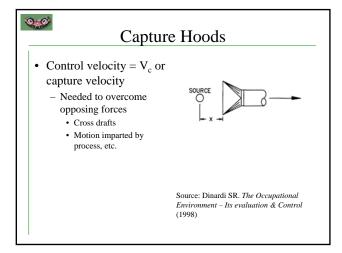
• Design parameters for hoods

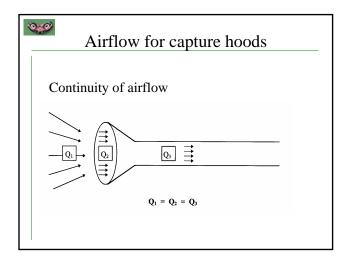
Hood geometry/shape

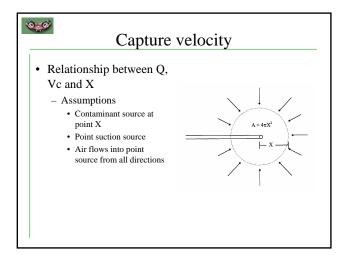
Hood size

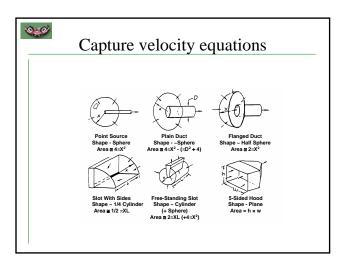
Q = volumetric flow rate (CFM)

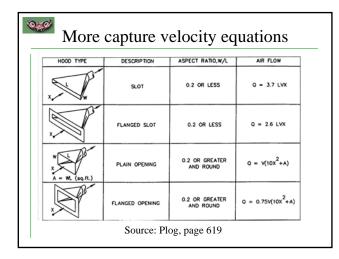
$$Q = VA$$

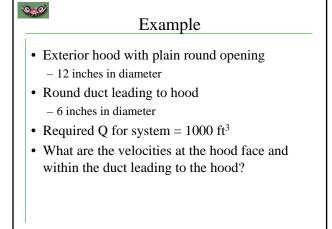

V = air velocity in fpm A = area of face in square feet

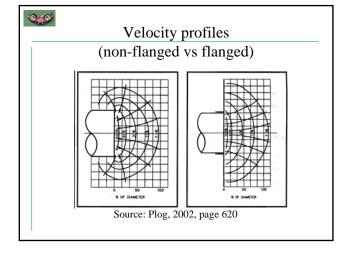

- flow is not measured directly
- determined by measuring face velocity & knowing cross sectional area of flow

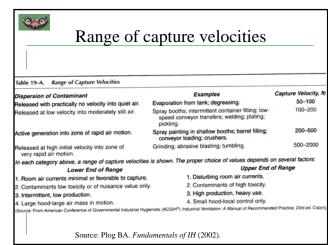


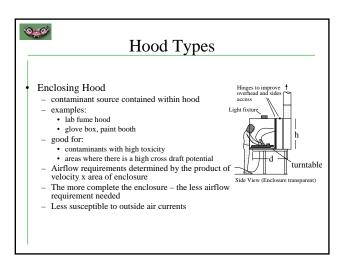

Airflow for capture hoods

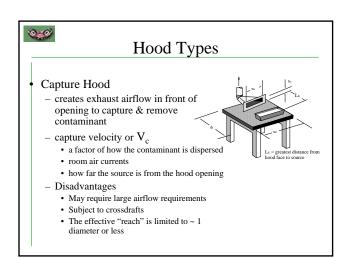

- Design parameter = Q
 - To determine the Q needed, we can use the velocity Vc needed to capture contaminant at point x in front of the hood

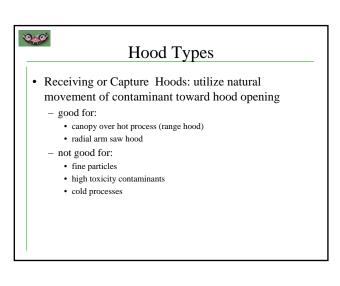


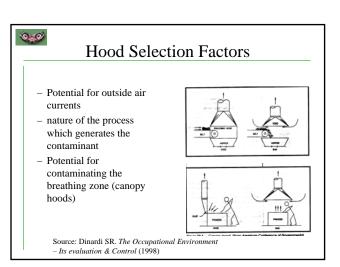

Example


• A 4" x 8" flanged hood is drawing 500 ft³/min of air. What is the velocity 6" in front of the hood?




Effect of Flanging


- A surface parallel to the hood face to prevent unwanted air flow behind the hood
- Effects of flange:
 - Decreasing the Q needed to achieve contaminant capture (reduce by ~ 25%)
 - Improving the capture velocity of a hood

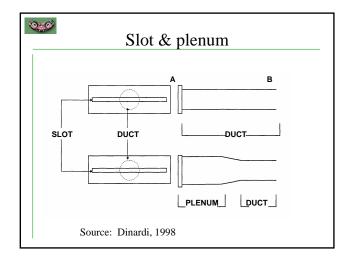


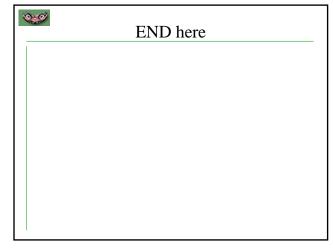
Enclosing Hoods

- Control velocity = V_f = face velocity
 - What velocity across hood face is necessary for proper contaminant control?
 - · Nature of the process and contaminants generated
 - · Hood shape and size
 - Magnitude of cross drafts
 - Higher is not always better
- Getting an even distribution of airflow at the face
 - Making the booth deeper
 - Using a baffle
 - Use of filters/air cleaning devices

Eg. Lab fume hood

- Recommended face velocity: 60 100 ft/min depending on
 - Room air currents
 - Location of equipment in hood relative to face
- Face velocity: > 150 ft. min
 - Air turbulence at hood face
 - Reverse airflow
 - Contaminants may exit at hood face


Swing grinder hood example


- Hood dimensions; 3 ft high x 5 ft wide
- What Q is needed to obtain the recommended face velocity of 150 FPM?
- What Q is needed if the opening is 4 x 6 ft?

Slots, plenums & baffles

- · Slot hoods with plenums
 - Useful for processes where contaminant is released across a large surface area
 - Degreasing tanks
 - · Plating tanks
 - Welding tables
 - Distributes airflow more evenly across the surface
- · Slot hood
 - A hood with a width-to-length ratio of 0.2 or less
 - Purpose to provide uniform distribution of airflow
- Plenum
 - A large chamber or compartment that distributes airflow

