

□ For multiple measurements, a mean value (also called nominal value), can be calculated. Hence, the error becomes:

$$E = x - \overline{x}$$

□Since x remains unknown, then E is still unknown.

Example: pressure measurement

□ <u>Given:</u> A measurement is claimed to be: P = 50 psi ± 5 psi.

□ <u>Required:</u> What is the accuracy of the pressure probe used for making this measurement?

 \Box <u>Answer:</u> The relative uncertainty $\triangle P / P$ is about:

$$\frac{\Delta P}{\overline{P}} \approx \pm \frac{5}{50} \approx \pm 0.1 \approx \pm 10\%$$

The accuracy may be estimated to be (around) 10%.

Calibration: Check the measuring instrument against a known standard.

 \rightarrow involves comparison with either:

 a) A primary standard (given by the "National Institute of standards and technology" – NIST – ex "National Bureau of Standards)

b)A secondary standard (with higher accuracy that instrument)

c) A known input source.

How to reduce random errors?

- □ There is NO random error free measurements.
- **□** Hence, the random errors CANNOT be eliminated.
- □ However, the easiest ways to reduce random errors is to take more measurements because:

ON AVERAGE, random errors tend to cancel out

Uncertainty in multi-sample measurements

Multi-Sample Measurements

Multi-sample measurements are significant number of data collected from enough experiments so that the reliability of the results can be assured by statistics.

□ In other words, a significant number of measurements of the same quantity (for fixed system variables) under varying test conditions (*i.e.* different samples and/or different instruments) so that the uncertainties can be reduced by the number of observations.

(this is tabulated in any statistics book		
Probability	± value of the mean	
50%	0.6754 _	
68.3%	_	
86.6%	1.5 _	
95.4%	2_	
99.7%	3	

Data Quality Control and Control Charts

Outliers: Chauvenet's Criterion

- □ Of a group of *n* readings, a reading may be rejected if the probability of obtaining that particular reading is less than *1/2n*. The probability distribution used is the normal distribution.
- □ It is applied *once* to the complete data set, and readings meeting the criterion are eliminated.
- □ The mean and standard deviation may then be recalculated using the reduced data set.

Chauvenet's criterion

The values x _i which are outside of the range	Number of sample	С
$\overline{x} \pm C \sigma$	5	1.65
are declared outliers (errors) and can be excluded for the analysis.	10	1.96
	15	2.13
	25	2.33
Excluding outliers can be controversial; proceed with caution!	50	2.57
	100	2.81

Methodology for discarding outlier:

- 1. After running an experiment, sort the outcomes from lowest to highest value.
 - The suspect outliers will then be at the top and/or the bottom of your list
- 2. Calculate the mean value and the standard deviation.
- 3. Using Chauvenet's criterion, discard outliers.
- 4. Recalculate the mean value and the standard deviation of smaller sample and STOP. (Do not repeat!)

Data Quality Control – example

- 1. The readings (in grams) were: 2.41, 2.42, 2.43, 2.43, 2.43, 2.44, 2.44, 2.45, 2.46, 2.47 and 4.85
- **2.** Calculate $\overline{m} = 2.68 g$ and $\sigma = 0.76 g$
- 3. Apply Chauvenet's criterion (for n=10, C=1.96): Any values, m_i, outside the range:

 $\overline{m} - C\sigma \le m_i \le \overline{m} + C\sigma \implies 1.19 \ g \le m_i \le 4.17 \ g$

is an outliers and should be discarded.

4. Clearly the 4.85 value is an outlier. No other points are.

- □ Control charts (Shewhart charts) are a useful graphical tool for performing quality control analysis developed in the 1920s by Dr. Walter A. Shewhart of the Bell Telephone Labs.
- □ Control charts show a graphical display of a <u>quality</u> <u>characteristic</u> that's measured from a sample versus the sample number (or time).
- Control charts contain:
 - □ a <u>center line</u> that represents the average value of the measured quality characteristic (the in-control state);
 - Two other horizontal lines, called the upper control limit (<u>UCL</u>) and the lower control limit (<u>LCL</u>) (the out of control state);
- □ The control limits are chosen so that if the process is in statistical control, nearly all of the sample points will fall between them. Typically this is 3*Std. Dev. of the measured quantity. As long as the points plot within the control limits, the process is assumed to be in control, and no action is necessary.

