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Fluid Mechanics Primer

Fluids and Solids: Fundamentals
We normally recognize three states of matter: solid; liquid and gas. 

However, liquid and gas are both fluids: in contrast to solids they lack the 
ability to resist deformation. 

Because a fluid cannot resist deformation force, it moves, or flows under 
the action of the force. Its shape will change continuously as long as the 
force is applied. 

A solid can resist a deformation force while at rest. While a force may 
cause some displacement, the solid does not move indefinitely. 

Introduction to Fluid Mechanics
• Fluid Mechanics is the branch of science that studies 

the dynamic properties (e.g. motion) of fluids
• A fluid is any substance (gas or liquid) which changes 

shape uniformly in response to external forces
• The motion of fluids can be characterized by a 

continuum description (differential eqns.)
• Fluid movement transfers mass, momentum and energy 

in the flow. The motion of fluids can be described by 
conservation equations for these quantities: the Navier-
Stokes equations.

Some Characteristics of fluids
Pressure: P = force/unit area
Temperature: T = kinetic energy of molecules
Mass: M=the quantity of matter
Molecular Wt: Mw = mass/mole
Density: ρ = mass/unit volume
Specific Volume: v = 1/ρ
Dynamic viscosity: µ = mass/(length•time)

-Dynamic viscosity represents the “stickiness”
of the fluid 
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Important fluid properties -1

• A fluid does not care how much it is deformed; 
it is oblivious to its shape

• A fluid does care how fast it is deformed; its 
resistance to motion depends on the rate of 
deformation

• The property of a fluid which indicates how 
much it resists the rate of deformation is the 
dynamic viscosity

Important fluid properties -2

• If one element of a fluid moves, it tends to carry other 
elements with it… that is, a fluid tends to stick to itself.

• Dynamic viscosity represents the rate at which motion 
or momentum can be transferred through the flow.

• Fluids can not have an abrupt discontinuity in velocity. 
There is always a transition region where the velocity 
changes continuously.

• Fluids do not slip with respect to solids. They tend to 
stick to objects such as the walls of an enclosure, so the 
velocity of the fluid at a solid interface is the same as 
the velocity of the solid.

• A consequence of this no-slip condition is the 
formation of velocity gradients and a boundary layer 
near a solid interface.

• The existence of a boundary layer helps explain why 
dust and scale can build up on pipes, because of the 
low velocity region near the walls

Boundary layer

Initial flat 
Velocity profile

Fully developed 
Velocity profile

Flow in a pipe

Boundary layer

• The Boundary layer is a consequence of the 
stickiness of the fluid, so it is always a region 
where viscous effects dominate the flow.

• The thickness of the boundary layer depends 
on how strong the viscous effects are relative 
to the inertial effects working on the flow.
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Viscosity

• Consider a stack of copy paper laying on a flat 
surface.  Push horizontally near the top and it will 
resist your push.

F

Viscosity

• Think of a fluid as being composed of layers like the 
individual sheets of paper.  When one layer moves 
relative to another, there is a resisting force.

• This frictional resistance to a shear force and to flow 
is called viscosity.  It is greater for oil, for example, 
than water.

Typical values

1.78 x 10-51.14 x 10-3Viscosity
μ (kg/ms)

--------2 x 109Bulk 
modulus
K (N/m2)

1.231000Density
ρ (kg/m3)

AirWaterProperty

Shearing of a solid (a) and a fluid (b)

The crosshatching represents (a) solid plates or planes 
bonded to the solid being sheared and (b) two parallel 
plates bounding the fluid in (b).  The fluid might be a 
thick oil or glycerin, for example.
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Shearing of a solid and a fluid

• Within the elastic limit of the solid, the shear stress τ
= F/A where A is the area of the surface in contact 
with the solid plate.

• However, for the fluid, the top plate does not stop.  It 
continues to move as time t goes on and the fluid 
continues to deform.

Shearing of a fluid

• Consider a block or plane sliding at constant 
velocity δu over a well-oiled surface under 
the influence of a constant force δFx.

• The oil next to the block sticks to the block 
and moves at velocity δu.  The surface 
beneath the oil is stationary and the oil there 
sticks to that surface and has velocity zero.

• No-slip boundary condition--The 
condition of zero velocity at a boundary is 
known in fluid mechanics as the “no-slip”
boundary condition.

Shearing of a fluid 
(Couette flow model) Shearing of a fluid

• It can be shown that the shear stress τ is given by

• The term du/dy is known as the velocity gradient and 
as the rate of shear strain.

• The coefficient is the coefficient of dynamic
viscosity, μ. (kg/m•s)

dy
du

μ=τ
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Shearing of a fluid

• And we see that for the simple case of two plates 
separated by distance d, one plate stationary, and the 
other moving at constant speed V

• Newton’s law of viscosity:

Area
F

h
V u=== μ

dy
duμτ

Coefficient of dynamic viscosity

• Intensive property of the fluid.
• Dependent upon both temperature and pressure for a 

single phase of a pure substance.
• Pressure dependence is usually weak and temperature 

dependence is important.

• Typical symbol is μ. (mu) in units of: mass length-1

time-1 (kg/m•s or lbm/ft•s)

Shearing of a fluid

• Fluids are broadly classified in terms of the 
relation between the shear stress and the 
rate of deformation of the fluid.

• Fluids for which the shear stress is directly 
proportional to the rate of deformation are 
know as Newtonian fluids.

• Engineering fluids are mostly Newtonian.  
Examples are water, refrigerants and 
hydrocarbon fluids (e.g., propane).

• Examples of non-Newtonian fluids include 
toothpaste, ketchup, and some paints.

Newtonian fluid

μ = (mu)= viscosity (or dynamic viscosity) kg/m s
ν = (nu)= kinematic viscosity m2/s

Shear stress in moving fluids

dy
dU

μ=τ

y U

ττ

ν = μ / ρ
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Non-Newtonian Fluids

τ

Rate of shear, dU/dy

Newtonian

Ideal fluid

Plastic

Pseudo-plastic 
Shear thinning

Shear-
thickening

Viscous forces: Fu

h
V

h
Fu μ2 =≈τ

h
V

AreaUnit
Fu μτ ==

μVh=uF

Reynolds number derivation

μμ
Re

22 Vh
Vh

hV
F
F

u

I ρρ
===

22hVFI ρ= μVh=uF
Inertial force = FI Viscous force = Fu

μ
Re Vhρ

=

Re indicates when inertial forces for the fluid flow are large compared to 
the viscous forces.  It is one of the most important non-dimensional 
numbers in fluid mechanics. Geometrically similar flows with similar Re 
will have similar boundary layers and other flow structures. 

Reynolds number (2)
• Kinematic viscosity = dynamic viscosity/density

• So Reynolds number becomes:

• Re described by a velocity, length, and viscosity

ityVisKinematic
LengthVelocityVh

cos
Re •

==
ν

ρ
μν ≡
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Application of Reynolds number

• The Re is useful to describe when the inertial of 
the fluid is important relative to the viscosity
– Inertial forces keeps things moving
– Viscous forces makes things stop

• Re also tells when the flow is smooth (laminar) or 
chaotic (turbulent)
– High Inertial forces large Re turbulent flow
– High viscous forces small Re laminar flow

• Laminar flow generally for Re < 1000
• Turbulent flow generally for Re > 10,000

Viscosity changes with Temp

• Fluid properties depend on T (and P somewhat) 
because of molecular interactions
– For a liquid, as T increases viscosity decreases
– For a gas, as T increases viscosity increases

• Gases also change density significantly with T, so 
the kinematic viscosity increases more rapidly 
than the dynamic viscosity

Dynamic viscosity Kinematic Viscosity
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Variation of Fluid Viscosity with 
Temperature
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Laminar and Turbulent flow
• UPPER IMAGE: Flow past a sphere at Re 

=15,000. Boundary layer separating ahead of 
the equator and remaining laminar ~ one 
radius, then becomes unstable and turbulent.

• BOTTOM IMAGE: Flow past a sphere at Re 
=30,000 with a trip wire. Wire hoop ahead of 
the equator trips the boundary layer, so it 
separates farther back than if it were laminar. 
The overall drag is dramatically reduced. 
This occurs naturally on a smooth sphere 
only at a Re numbers 10 times as great.

• Flow from a turbulent jet [car exhaust]

Jet: Werle, 1980 (ONERA) Photos from 
Album of Fluid Motion," by Van Dyke

Flow in a pipe for different Re Flow around a sphere

• Re ~ 1

• Re ~ 10

• Re ~ 100
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Coefficient of Drag for a Sphere

Variation of Log (Cd) vs Log(Re) for a smooth sphere

Line shows Cd for stokes region (Re<1) 

24/Re

END HERE Part I
• For smooth spheres 

Newton’s drag law:

• Re < 1, Cd = 24/Re

• 1< Re<1000

• 1000 < Re < 105

Cd ≈ 0.44 Re

PART II

• Some applications of fluid mechanics

• Pressure = F/A
• Units: Newton's per square meter,  Nm-2,  kgm-1 s-2

• The same unit is also known as a Pascal, Pa, i.e. 
1Pa = 1 Nm-2) 

• Also frequently used is the alternative SI unit the 
bar, where 1 bar = 105 Nm-2

• Dimensions:  M L-1 T-2

Fluid Mechanics – Pressure
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• Gauge pressure:
pgauge = ρ gh

• Absolute Pressure:
pabsolute = ρ gh + patmospheric

• Head (h) is the vertical height of fluid for 
constant gravity (g):

h = p/ ρ g
• When pressure is quoted in head, density (ρ) 

must also be given.

Fluid Mechanics – Pressure

• Density (r): mass per unit volume.      Units are M L-3, (slug ft 
-3, kg m-3)

• Specific weight (SW): wt per unit volume.       Units are F L-3, 
(lbf ft-3, N m-3)

• sw = rg
• Specific gravity (s): ratio of a fluid’s density to the density of 

water at 4° C
s = r/rw

• rw = 1.94 slug ft -3, 1000 kg m-3

Fluid Mechanics – Specific Gravity

• Mass flow rate (   ) = Mass of fluid flowing through a 
control surface per unity time (kg s-1)

• Volume flow rate, or Q = volume of fluid flowing 
through a control surface per unit time (m3 s-1)

• Mean flow velocity (Vm):

Vm = Q/A

Fluid Mechanics – Continuity and 
Conservation of Matter

.
m

• Flow through a pipe:
• Conservation of mass for steady state (no storage) says 

in =      out

ρ1A1Vm1 = ρ 2A2Vm2

• For incompressible fluids, density does not changes (ρ 1 = ρ 2) 
so A1Vm1 = A2Vm2 = Q

Continuity and Conservation of Mass

.
m

.
m

.
m

.
m
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• The equation of continuity states that for an 
incompressible fluid flowing in a tube of varying 
cross-sectional area (A), the mass flow rate is the 
same everywhere in the tube:

ρ 1A1V1 = ρ 2A2V2
• Generally, the density stays constant and then it's 

simply the flow rate (Av) that is constant. 

Fluid Mechanics – Continuity Equation
Bernoulli’s equation

Y1

Y2

A1 V1

A2 V2

= 
.
m1

.
m2

ρ1A1V1= ρ2 A2V2

For incompressible flow

A1V1= A2V2

Assume steady flow, V parallel to streamlines & no viscosity

Bernoulli Equation – energy
• Consider energy terms for steady flow:
• We write terms for KE and PE at each point

Y1

Y2

A1 V1

A2 V2

Ei = KEi + PEi

11
2

112
1

1 ymgVmE && +=

22
2

222
1

2 ymgVmE && +=

As the fluid moves, work is being done by the external 
forces to keep the flow moving. For steady flow, the work 
done must equal the change in mechanical energy.

Bernoulli Equation – work
• Consider work done on the system is Force x distance
• We write terms for force in terms of Pressure and area

Y1

Y2

A1 V1

A2 V2
Wi = FiVi dt =PiViAi dt

1111 / ρmPW &=

Now we set up an energy balance on the system. 
Conservation of energy requires that the change in 
energy equals the work done on the system.

Note ViAi dt = mi/ρi

2222 / ρmPW &−=
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Bernoulli equation- energy balance

Energy accumulation = ΔEnergy – Total work
0 = (E2-E1) – (W1+W2)   i.e. no accumulation at steady state

Or W1+W2 = E2-E1        Subs terms gives:
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For incompressible steady flow ρρρ === 2121 andmm &&

Forms of the Bernoulli equation

• Most common forms:
hgVPVP Δ++=+ ρρρ 2

22
1

2
2
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htVSVS PPPPP Δ++=+ 2211

htVSVS PlossesPPPP Δ+++=+ 2211

The above forms assume no losses within the volume…

If losses occur we can write:

And if we can ignore changes in height:

lossesPPPP VSVS ++=+ 2211 Key eqn

Application of Bernoulli Equation
Daniel Bernoulli developed the most important equation in fluid 
hydraulics in 1738. this equation assumes constant density, 
irrotational flow, and velocity is derived from velocity potential: 

Bernoulli Equation for a venturi
• A venturi measures flow rate in a duct using a pressure 

difference. Starting with the Bernoulli eqn from before:

• Because there is no change in height and a well designed 
venturi will have small losses (<~2%) We can simplify this to:

• Applying the continuity condition (incompressible flow) to get:

htVSVS PlossesPPPP Δ+++=+ 2211

VSVVSS PPorPPPP Δ=Δ−+=+ 1221
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Venturi Meter

• Discharge Coefficient Ce corrects for losses = f(Re)
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• PT=PS + PV      i.e. an energy balance
• Static pressure – potential energy
• Velocity pressure – KE
• Total pressure – total energy
• Recall KE is ½ mV2 so KE term is proportional to V2

• At NTP, PV = (V/4005)2 for V in ft/min, PV in inches H2O
– Or V = 4005√PV {at non std conditions, V = 4005√(PV/d)}

Ps

Pv

Pitot tube
The static and Pitot tube are often combined into the one-piece Pitot-
static tube.

5.12

Static pressure port

Total pressure port
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