- I. ENVH 557 Exposure Controls
 M. Yost, Winter 2006 KEY- Problem set II (due Thurs. Feb 2, 2006)
- 1. Standard conditions in ventilation are: T = 70°F, P = 29.9in Hg, air density = 0.075 lbm/ft3. Express the temperature in degrees C, R and K. Express the pressure in the following units: mm Hg, inches of water, atm and psi. What change in temperature or pressure is needed to make a change in the air density of at least 5%?

ANS: $70^{\circ}\text{F} + 459.7 = 529.7^{\circ}\text{R}$; $(70^{\circ}\text{F}-32) *5/9 = 21.1^{\circ}\text{C}$; $(70^{\circ}\text{F}-32) *5/9 + 273 = 294.1^{\circ}\text{K}$ $29.9 \text{ "Hg} = 760 \text{ mmHg} = 1 \text{ Atm} = 407 \text{"H}_20$

Air density changes proportionally to absolute pressure and inversely with absolute temperature. This is expressed by the density factor = $d = (P/407)^* 529.7/(459.7+T)$ where P is pressure in "H₂0 and T is temperature in °F. To get a 5% change in the density factor, temperature and pressure would be above or below the range below:

Problem 1b	High	Low	
Temp5%	98		44
Press5%	428		386

2. Air is flowing at a velocity of 3500ft/min (FPM) through a circular duct section 15 inches in diameter and 12 ft long. Assume standard conditions. What is the volume flow rate? What is the mass flow rate?

ANS: the volume flow rate in CFM = Q = (duct area) * velocity; mass flow rate is = m_dot = Q*density. At standard conditions the air density is 0.0.75 lbm/cuft. Therefore:

Problem 2		
FPM	Duct_vel	3500
lb/cuft	Air_density	0.075
Inches	Duct_diam	15
Sqft	Duct_area	1.23
CFM	Q	4295.15
lbm/min	m_dot	322.14

3. At the end of the 15-inch section above, the duct diameter reduces to 9 inches and after 18 feet at this diameter, changes to a 9" x 12" rectangular duct section 12 feet long. Draw a sketch of this duct network and label each section (a,b,c, etc.). What is the new velocity, volume flow rate and Re number in each section of duct? (HINT: to calculate Re for a non-circular duct, you need to find the equivalent hydraulic diameter of the duct section.)

ANS: The volume flow rate is the velocity times the area or Q= VA = 3500*1.227= 4295 CFM. The mass flow 0.075lbs/cuft*4295 CFM = 322 lbs/min. These terms remain constant in a serial flow duct section. Since density is constant, we can use Q above to compute the velocity into each section. The table below gives the calculations for each duct section. (Note the diameter in yellow is the hydraulic diameter which is = 4* area/perimeter. Also, the area of duct section 3 is just the geometric area (length * width), it is NOT computed from the hydraulic diameter). We see that section 2 has the highest Reynolds number, therefore making that section laminar will make all others laminar.

Note that Reynolds number scales linearly with velocity, so we can use a simple proportion to find the velocity that gives Re= 2000. Setting the velocity to 26 FPM in section 2 gives Re~2000 (the maximum velocity condition for laminar flow).

Kinematic Viscosi	ity of air			Duct Section #3			
cm^2/s		Ft2/s		width	length	D_hydro	
0.15083		1.6235E-04		9	12	10.2857143	
Problem 3							
section	Dia(in)	SqFt	Dia (ft)	Velocity	CFM	lb/min	Re
1	15	1.22718463	1.250	3500	4295	322	449133
2	9	0.44178647	0.750	9722	4295	322	748554
3	10.29	0.75	0.857	5727	4295	322	503926
For laminar flow, we choose section 2 as limiting case; assume a maximum Re of 5000							
2	9	0.44178647	0.750	64	28	2	4928

4. Air is moving through a pipe at a volume flow rate of 2000 CFM and a temperature of 70°F. If the temperature increases to 95°F, what is the new volume flow rate, assuming the barometric pressure (1 atm) remains constant? What is the new mass flow rate?

ANS: The problem is solved directly if we remember the mass flow stays constant while the volume flow rate changes with changes in density, so (Rho1) Q1 = (Rho2) Q2

Problem 4	Temp_1	Temp_2	Temp_1R	Temp_2R	
	70	95	529.67	554.67	
Q1 (CFM)	Density_1	m1 lbs/min	Density_2	Q_2 (CFM)	
2000	0.075	150	0.07162	2094.4	

5. The velocity pressure of air in a duct is 1.5 in w.g. What is the velocity? ANS: Assume standard conditions, so $V = 4005*\sqrt{(Pv)}$

Problem 5	Pv	Velocity	
		1.5	4905.10

6. The static pressure in a 5-inch diameter duct is measured as -2.5 in w.g. The total pressure (or stagnation pressure) is -1.3 in w.g. What is the velocity of the air in the duct? What is the volume flow rate?

ANS: Use the relationship Pt=Ps+Pv to find the velocity pressure Pv, then compute the velocity from the relationship in problem #5. The volume flow rate Q is then computed in the same manner as in problem 3.

Problem 6

Pt	Ps	Pv		Dia(in)	SqFt	Velocity	CFM
	-1.3	-2.5	1.2	5	0.1364	4387.3	598

7. Assume a ventilation system is operating with a 4-inch diameter duct. At what volume flow rate (cfm) will the upper limit of laminar flow be reached?

ANS: This problem is similar to problem 3, assume Re of ~2000 for laminar flow.

Problem 7	Dia(in)	SqFt	Dia (ft)	Velocity	CFM	Re
	4	0.08726646	0.333	58.45	5	2000