

Types of losses

• Friction Losses:

0.0

- Fluid in motion encounters drag along the surface
- Energy is needed to overcome the drag force
- The drag force is due to the fluid viscosity
- Dynamic losses
 - Turbulence and eddies in the flow
 - Momentum losses due to change in direction
 - Found in expansions, contractions, elbows, junctions and hood entries

See Drin

Principles of LEV Design

- To protect the worker's breathing zone:
 the contaminant is captured close to the point of release (local) and removed (exhausted) from work areas
- · prevents contaminant migration to other areas
- · systems are always mechanical
- volume flow rate is much less than general or dilution ventilation

• Purpose

- Capture and remove contaminant at the source
- Effectiveness determined by
 - Hood configuration & shape
 - The extent to which the hood encloses the contaminant source
 - Cardinal rule: enclose source to the extent possible
 - Amount of air flow into hood (i.e. Qhood)

Efficien	cy for di	fferent	entrie	S
• C. depends	HOOD TYPE	DESCRIPTION	COEFFICIENT OF ENTRY, Ce	ENTRY LOSS
 • Unlike H_e it does not depend on Q the flow rate 		PLAIN OPENING	0.72	0.93 VP
	o e	FLANGED OPENING	0.82	0.49 VP
	Par-	TAPER or CONE HOOD	Varies with angle of taper or cone. See Fig. 6-10	
		BELL MOUTH INLET	0.98	0.04VP

More	capture v	elocity ec	quations
HOOD TYPE	DESCRIPTION	ASPECT RATIO,W/L	AIR FLOW
x. N.	SLOT	0.2 OR LESS	0 = 3.7 LVX
*	FLANGED SLOT	0.2 OR LESS	Q = 2.6 LVX
$ \begin{array}{c} W \\ X \\ A = WL (sq.ft.) \end{array} $	PLAIN OPENING	0.2 OR GREATER AND ROUND	$Q = V(10X^2 + A)$
	FLANGED OPENING	0.2 OR GREATER AND ROUND	$Q = 0.75V(10X^2 + A)$
	Source: Pl	og, page 619	

Effect of Flanging

- A surface parallel to the hood face to prevent unwanted air flow behind the hood
- Effects of flange:

\$

- Decreasing the Q needed to achieve contaminant capture (reduce by $\sim 25\%)$
- Improving the capture velocity of a hood

Enclosing hood: Lab fume hood

- Recommended face velocity: 60 100 ft/min depending on
 - Room air currents
 - Location of equipment in hood relative to face
- Face velocity: > 150 ft. min
 - Air turbulence at hood face
 - Reverse airflow
 - Contaminants may exit at hood face

- Exterior hood with plain round opening - 12 inches in diameter
- Round duct leading to hood - 6 inches in diameter

\$

``

- Required Q for system = 1000 ft^3
- What are the velocities at the hood face and within the duct leading to the hood?

Example Problem 2

\$

• A 4" x 8" flanged hood is drawing 500 ft³/min of air. What is the velocity 6" in front of the hood?

Example Problem 3

• Find P_{sh} and C_e for a plain end duct with V=2000 fpm (assume no friction loss and NTP)

