

\$ Branches and balancing

- · Junctions join 2 or more duct branches
- At the junction, the system is "balanced" when the static pressure in each branch is the same
 - All systems will naturally be balanced since Ps must be uniform across the duct
 - However, for design of a system, we must insure that the branches match or have sufficient Ps to give the desired results (within some error)
- To account for this we choose in the design process a "governing static pressure" at the junction. The governing static pressure is the max $\{P_s\}$ that will be required to give at least the desired Q in all branches

&

Design Balancing Rules

- Compute P_{s(ratio)} = P_{s(higher)}/P_{s(lower)}
 If P_{s(ratio)} < 1.05 → Acceptable use P_{s(higher)} as the governing static pressure at the junction
- If $1.05 < P_{s(ratio)} < 1.2 \Rightarrow$ Increase Q in the $P_{s(lower)}$ branch with:

$$Q_{adj} = Q_{original \ design} \sqrt{\frac{P_{S(higher)}}{P_{S(lower)}}}$$

• If $P_{s(ratio)} > 1.2 \rightarrow Resize$ the duct in the $P_{s(lower)}$ branch

Nature of Contaminant	Examples	Design Velocity
Vapors, gases, smoke	All vapors gases and smokes	Any desired velocity (economic optimum velocity usually 1000-1200 (pm)
Fumes	Zinc and aluminum oxide fumes	1400-2000
Very fine light dust	Cotton lint, wood flour, litho powder	2000-2500
Dry Dusts and powders	Fine rubber dust, Bakelite molding powder dust, jute lint, cotton dust, shavings (light), soap dust, leather shavings	2500-3500
Average industrial dust	Sawdust (heavy and wei), grinding dust, buffing lint (dr7), wool jute dust (shaker waste), coffee beans, shoe dust, granice dust, silica flour, general material handling, brick cutting, clay dust, foundry (general), limestone dust, pack- aging and weighing asbestos dust in textile industries	3500-4000
Heavy dusts	Metal turnings, foundry tumbling barrels and shakeout, sand blast dust, wood blocks, hog waste, brass turnings, cast iron boring dust, lead dust	4000-4500
Heavy or moist dusts	Lead dust with small chips, moist commt dust, asbestos chunks (rom transite pipe cut- ting machines, buffing lint (sticky), quick-lime dust	4500 and up

Hood installation

0

- Hoods should be designed to avoid jerry-rigging (i.e., make convenient and accessible).
- Protect hoods from traffic with barriers: walls, bump rails, etc.
- Reinforce hoods with angle iron or pipes and construct at least two gauges heavier than ducts
- Consider explosive hazards in wiring and fixtures
- Consider drainage for wet processes and chip traps for particulates
- Use perforated or expanded metal plenum face to avoid sucking in large objects

Selecting duct materials

- Industrial Ventilation's Construction Guidelines
- Materials:

0.0

- Black iron: welded, flanged and gasketed
- Galvanized steel sheet: welded, T<400F
- Plastic, fiberglass, stainless for corrosive Specify fire-retardant if plastic
- Shape: round inherently stronger, easier to seal and less fatigue. Rectangular should be as square as possible.
- Gauge
 - Abrasive dusts: heavier gauges give greater wear time
 - Larger ducts weaker, need heavier gauge

Where to run ducts

• Consider how will be supported

0

- Avoid highly desirable spaces
 - Run along walls or perpendicular to walls
 - Keep above traffic and process apparatus, but not so high that difficult to access
- If must penetrate wall, make hole larger, don't decrease the size of the duct

- Elbows smooth or 5 (D< 7") or 7 section (D \ge 7") with R/D \ge 2D. Small smooth elbows can be R/D=1.5
- Junction lateral angles should be 30 or 45 degrees

Q#Ø	END HERE