Statistical Methods for Evaluating Biomarkers

Holly Janes Fred Hutchinson Cancer Research Center

November 10, 2008

Biomarkers for...

Diagnosis: disease versus non-disease Screening: early diagnosis Prognosis: predicting outcome

Examples

- \blacktriangleright clinical signs / symptoms
- \blacktriangleright laboratory tests
- \blacktriangleright gene expression technology
- \blacktriangleright proteomics
- \triangleright combinations of any of the above

How to evaluate their accuracy?

Outline

- 1. Measures of biomarker accuracy
- 2. Evaluating incremental value
- 3. Phases of biomarker development
- 4. Study design issues
- 5. Advanced topics
- 6. Software

Measures of Accuracy for Binary Markers

Classification Probabilities

D = outcome (disease)

Y = binary marker

$D = 0$	$D = 1$	
$Y = 0$	True negative	False negative
$Y = 1$	False positive	True positive

false positive fraction = $FPF = P[Y = 1|D = 0] = 1$ - specificity true positive fraction = $TPF = P[Y = 1|D = 1]$ = sensitivity

Ideal test: $TPF = 1$ and $FPF = 0$

Classification Probabilities, cont'd

- \triangleright condition on disease status
- \blacktriangleright describe test accuracy
- \blacktriangleright helpful to public health researchers: should the test be used?
- \blacktriangleright helpful to individual: should I have the test?

Predictive Values

positive predictive value = $PPV = P[D = 1|Y = 1]$ negative predictive value = $NPV = P[D = 0|Y = 0]$

Ideal test: $PPV = 1$ and $NPV = 1$

- \triangleright condition on test result
- \blacktriangleright require cohort study to estimate
- \triangleright depend on TPF, FPF, and prevalence (ρ)

 $PPV = \rho TPF/(\rho TPF + (1-\rho)FPF)$ $NPV = (1-\rho)(1-FPF)/(1-\rho)(1-FPF) + \rho(1-TPF)$

- \triangleright describe predictive capacity of test
- \blacktriangleright given my test result, how likely is it that I'm diseased?

Example: Diagnosis of CAD

- *Y* : exercise stress test
- *D* : coronary artery disease

$$
TPF = 0.797
$$
, $FPF = 0.259$, $\rho = 0.698$
PPV = 0.877, NPV = 0.611, $\tau = 0.634$

- \triangleright CAD detects 80% of diseased subjects and incorrectly identifies 26% of non-diseased as suspicious
- \triangleright 88% of test positives and 39% of test negatives have disease

Inappropriate Commonly Used Measures

- \blacktriangleright misclassification rate (MCR)
- \triangleright odds ratio

MCR

\blacktriangleright = $P[Y \neq D]$ $= P[Y = 1|D = 0]P[D = 0] + P[Y = 0|D = 1]P[D = 1]$ $=$ FPF $*(1 - \rho) + (1 - TPF) * \rho$

- \blacktriangleright ignores differential importance of false negative and false positive errors
- \blacktriangleright depends on the prevalence (ρ)
	- \triangleright eg, if $P[Y = 1 | D = 1] = P[Y = 1 | D = 0] = 0$ with low ρ , MCR low
- \triangleright used a lot in statistics, not in medical settings

Odds Ratio

$$
\blacktriangleright\,=\,\tfrac{\text{TPF}*(1-\text{FPF})}{\text{FPF}*(1-\text{TPF})}
$$

- \triangleright measure of association, not classification
- \triangleright good classification \Rightarrow huge odds ratios
- ► e.g., TPF = 0.80, FPF = 0.10 (a 'good' test)

► Odds Ratio =
$$
\frac{0.80*(1-0.10)}{0.10*(1-0.80)} = 36
$$

(FPF, TPF) corresponding to different odds ratios

- ► large odds ratio does *not* imply good classifier
- \triangleright need to report FPF and TPF separately

Measures of Accuracy for Continuous Markers

Classification Accuracy for a Continuous Test

Continuous marker, *Y*

 \blacktriangleright most markers

The ROC curve generalizes (FPF, TPF) to continuous markers

Interstitute thresholding rule: 'positive' if $Y > c$

$$
\blacktriangleright \text{ TPF}(c) = P[Y \geq c | D = 1] \newline \text{ FPF}(c) = P[Y \geq c | D = 0]
$$

► ROC(·) = {(FPF(*c*), TPF(*c*)), *c* ϵ ($-\infty, \infty$)}

 \rightarrow

Attributes of the ROC

- \triangleright shows entire range of possible performance
- \triangleright puts different tests on a common relevant scale

Figure 4.3 Probability distributions of test results for the DPOAE and ABR tests among hearing impaired ears and normally hearing ears.

> From *The Statistical Evaluation of Medical Tests for Classification and Prediction* by Margaret S. Pepe, Ph.D., Oxford University Press, 2003

Figure 4.4 ROC curves for the DPOAE and ABR tests.

 \blacktriangleright two tests have similar ability to distinguish between hearing-impaired and normal ears

> From *The Statistical Evaluation of Medical Tests for Classification and Prediction* by Margaret S. Pepe, Ph.D., Oxford University Press, 2003

Choosing a Threshold

Formal decision theory:

 $\text{Expected cost}(c) = \rho(1 - TPF(c))C_D + (1 - \rho)FPF(c)C_M$

 C_D is the cost of negatively classifying a diseased subject *C^N* is the cost of positively classifying a non-diseased subject

=⇒ cost minimized at the threshold *c* where the slope of the ROC curve equals

$$
\frac{1-\rho}{\rho}\frac{C_N}{C_D}
$$

Figure requires specifying costs C_D and C_M (tricky!)

Choosing a Threshold, cont'd

Common informal practice:

- \blacktriangleright fix maximum tolerated FPF
- \triangleright eg must be very low (\lt 5%) for cancer screening test
- \blacktriangleright $f_0 = \text{FPF} \rightarrow \text{threshold} = 1 f_0$ quantile among controls
- \triangleright or fix minimum tolerated TPF
- \triangleright eg must be very high in most diagnostic settings
- \blacktriangleright *t*₀ = TPF \rightarrow *threshold* = 1 *t*₀ quantile among cases

Summary Measures of Classification Accuracy

- \blacktriangleright TPF = ROC(f_0) at chosen FPF = f_0
	- \triangleright percent cases detected for fixed FPF
- ► FPF = ROC⁻¹(t_0) at chosen TPF = t_0
	- \blacktriangleright FPF for fixed percent cases detected
- AUC = \int_0^1 \int_0^1 ROC(*f*)*df*
	- \triangleright probability of correctly ordering a randomly chosen case and control observation
	- \blacktriangleright little clinical relevance
	- \triangleright summarizes TPF over entire FPF range
- **P** partial AUC = $\int_{0}^{f_0}$ $\int_0^{t_0} \mathsf{ROC}(f_0)dt$
	- \triangleright restricted ROC region, but little clinical relevance

Example: Pancreatic Cancer Data

- \triangleright marker sought for screening for pancreatic cancer
- \triangleright data on two markers: CA 19-9 and CA 125

From *The Statistical Evaluation of Medical Tests for Classification and Prediction* by Margaret S. Pepe, Ph.D., Oxford University Press, 2003

```
AUC for CA 125 = 0.71AUC for CA 19-9 = 0.89p-value = 0.007
\implies the probability of correct ordering is 18% higher with CA
19-9
```
 $ROC(0.2)$ for CA 125 = 0.49 $ROC(0.2)$ for CA 19-9 = 0.78 p -value = 0.04 \implies CA 19-9 detects 29% more cancers with the same FPR = 0.2

 \triangleright conclusions about ROC(0.2) are more clinically important than those about AUC

Generalizing Predictive Values to Continuous Biomarkers

 \blacktriangleright a relatively new area of research; not well developed

Evaluating Incremental Value

Incremental Value

- \blacktriangleright how much classification accuracy does the new marker add to existing predictors?
- \triangleright eg how much does CRP add to existing lipid measurements and risk factor information in discriminating between those who will and will not develop CVD?

How Best to Combine Markers?

$$
\blacktriangleright \ Y=(\ Y_1,\ldots,\ Y_P)
$$

 \blacktriangleright the "best" combination is the risk score, $R(Y) = P(D = 1 | Y_1, \ldots, Y_P)$ McIntosh and Pepe (*Biometrics*, 2000)

 \triangleright "best" \implies No other combination of (Y_1, \ldots, Y_p) has a (FPF, TPF) point above its ROC curve

To Combine Markers

 \blacktriangleright Estimate

$$
R(Y)=P(D=1|Y_1,\ldots,Y_P)
$$

- \triangleright using logistic regression, neural networks, classification trees, support vector machines, Bayesian modelling,
- \triangleright logistic regression can be used with case-control data
- \triangleright Calculate the ROC curve for $R(Y)$ (it's just another marker!)
	- \triangleright avoid overoptimism due to fitting and evaluating model on same data
	- \triangleright split into training and validation data
	- \triangleright or use cross-validation

Evaluating Incremental Value

► new marker *Y*^{*}, baseline markers *Y*₁, ..., *Y_P*

 \triangleright compare the ROC curves for

$$
P(D=1|Y_1,\ldots,Y_P)
$$

and

$$
P(D=1|Y_1,\ldots,Y_P,\,Y^*)
$$

NOT quantified by β^* in

 $g(P(D = 1 | Y_1, \ldots, Y_P, Y^*)) = \beta_0 + \beta_1 Y_1 + \ldots + \beta_P Y_P + \beta^* Y^*$

Pancreatic Cancer Example

$$
Y_1 = \log CA - 19 - 9
$$
 $Y_2 = \log CA - 125$

Example 10 combination $\beta_1 Y_1 + \beta_2 Y_2$ from fitting

$$
logit P(D = 1 | Y_1, Y_2) = \alpha + \beta_1 Y_1 + \beta_2 Y_2
$$

$$
exp(\beta_2) = 2.54 (p = 0.002)
$$

$$
\triangleright
$$
 Y₂ strongly associated with *D*

 $ROC(0.05) = 0.68$ for CA 19-9 $ROC(0.05) = 0.71$ for combination of CA 19-9 and CA 125

 \blacktriangleright extremely common phenomenon

Phases of Biomarker Development

From: Pepe et al. Phases of biomarker development for early detection of cancer. *JNCI* **93**(14):1054–61, 2001.

Study Design Issues

Matching in Case-Control Studies

- \blacktriangleright randomly sample cases
- \triangleright select controls matched to cases with respect to confounders
- \blacktriangleright attempts to eliminate confounding
- \blacktriangleright eg Physicians' Health Study
	- \triangleright evaluate PSA as a screening tool for prostate cancer
	- \triangleright for each case select 3 controls within 1 years of age of the case
	- \triangleright cases tend to be older, older subjects tend to have higher $PSA \implies$ age is confounder
	- \triangleright matching on age attempts to correct for this

Implications of Matching

 \triangleright must adjust for matching covariates in analysis

- \blacktriangleright unadjusted analysis is biased
- \blacktriangleright more complicated analysis
- \triangleright can't assess incremental value of marker over matching covariates
- \blacktriangleright tends to increase efficiency

Selected Verification

- \triangleright in prospective studies, may not be possible to obtain the outcome (disease status) for all individuals
	- \triangleright too expensive (cost or resources)
	- \triangleright not ethical (eg biopsy)
- \triangleright often biomarker value determines whether disease status is verified
	- \triangleright eg, in study of PSA and DRE for prostate cancer screening, biopsy recommended if PSA > 2.5 or DRE+
- \triangleright selective sampling can lead to biased estimates of accuracy – "verification bias" or "work-up bias"

Implications of Selected Verification

When comparing two binary biomarkers in paired study:

 \triangleright those who test negative on both tests are not needed to estimate relative TPF, FPF

When evaluating one binary biomarker:

- \blacktriangleright naive TPF, FPF are biased
- \blacktriangleright there are methods for correcting for verification bias
- \blacktriangleright all make untestable assumptions about the verification mechanism
	- \triangleright verification may depend on unmeasured factors!
- \blacktriangleright lead to decreased precision of estimated TPF
- \triangleright difficult to find settings with cost savings: reduction in number verified offset by increased total sample size
- \triangleright avoid selected verification whenever possible

Advanced Topics

Covariate adjustment

- \triangleright adjust for covariates that impact the marker distribution in controls
- \triangleright eg center effects in multicenter studies
- \blacktriangleright analogous to covariate adjustment in studies of association
- \blacktriangleright the accuracy of the marker in a population with fixed covariate value

ROC regression

- \triangleright model covariate effects on biomarker accuracy
- \blacktriangleright eg disease severity
- \triangleright fit regression model for ROC curve, as function of covariates

Time-dependent ROC curves

- \triangleright model biomarker accuracy as a function of time between marker measurement and disease
- \triangleright eg the accuracy of PSA may decline with increasing time lag between sample collection and disease
- \triangleright define time-dependent versions of TPF, FPF
- \triangleright model accuracy as a function of time

Imperfect reference test

- ► account for lack of gold standard for *D*
- \blacktriangleright eg questionnaire to diagnose depression
- \triangleright various statistical approaches ... but is this a statistical problem?

Software

On DABS Center website: http://www.fhcrc.org/labs/pepe/dabs

- \triangleright Stata packages for ROC analysis and sample size calculations by Pepe et al.
- \triangleright R programs for time-dependent ROC curves by Patrick Heagerty

Websites

http://www.fhcrc.org/labs/pepe/dabs DABS Center website. Contains datasets, software, references...

http://faculty.washington.edu/∼azhou/books/software.doc Lists some free and commercial computer programs. Also available through the Wiley website for *Statistical Methods in Diagnostic Medicine* by Zhou, Obuchowski and McClish, 2002.

http://xray.bsd.uchicago.edu/krl/roc_soft.htm Charles Metz and colleagues at University of Chicago are pioneers in ROC analysis software. Developed with a focus on applications in radiologic imaging.

References

Study design

- ▶ Baker SG, Kramer BS, McIntosh M, Patterson BH, Shyr Y, Skates S. Evaluating markers for the early detection of cancer: overview of study designs and methods. *Clinical Trials* **3**:43-56, 2006.
- ▶ Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Lijmer JG, Moher D, Rennie D, de Vet, HCW. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. *Annals of Internal Medicine* **138**:40-44, 2003.
- ▶ Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Moher D, Rennie D, de Vet, HCW, Lijmer JG. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. *Annals of Internal Medicine* **138**(1):W1-12, 2003.
- \triangleright Janes H, Pepe MS. The optimal ratio of cases to controls for estimating the classification accuracy of a biomarker. *Biostatistics* **7**(3):456-68, 2006.
- ▶ Pepe MS, Etzioni R, Feng Z Potter JD, Thompson M, Thornquist M, Winget M and Yasui Y. Phases of biomarker development for early detection of cancer. *Journal of the National Cancer Institute* **93**(14):1054–61, 2001.
- ▶ Zhou, SH, McClish, DK, and Obuchowski, NA. Statistical Methods in Diagnostic Medicine. Wiley Press, 2002.

Combining markers

- ▶ McIntosh MS and Pepe MS. Combining several screening tests: Optimality of the risk score. *Biometrics* **58**:657–64, 2002.
- \blacktriangleright Pepe MS, Cai T, Longton G. Combining predictors for classification using the area under the ROC curve. *Biometrics* **62**:221–229, 2006.

Covariate adjustment

 \triangleright Janes H, Pepe MS. Matching in studies of classification accuracy: Implications for analysis, efficiency, and assessment of incremental value. *Biometrics* 2008; 64: 1-9.

 \blacktriangleright Janes H, Pepe MS. Adjusting for Covariate Effects on Classification Accuracy Using the Covariate-Adjusted ROC Curve. *Biometrika* (in press)

ROC regression

- \triangleright Alonzo TA and Pepe MS. Distribution-free ROC analysis using binary regression techniques. *Biostatistics* **3**:421–32, 2002.
- \triangleright Cai T and Pepe MS. Semi-parametric ROC analysis to evaluate biomarkers for disease. *Journal of the American Statistical Association* **97**: 1099–1107, 2002.
- ▶ Cai T. Semiparametric ROC regression analysis. *Biostatistics* **5**(1):45–60, 2004.
- ▶ Dodd L, Pepe MS. Partial AUC estimation and regression. *Biometrics* **59**:614–623, 2003.
- \triangleright Dodd L, Pepe MS. Semi-parametric regression for the area under the Receiver Operating Characteristic Curve. *Journal of the American Statistical Association* **98**:409–417, 2003.

▶ Heagerty PJ and Pepe MS. Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children. *Applied Statistics* **48**:533–51, 1999.

Time-dependent ROCs

- ► Cai T, Pepe MS, Zheng Y, Lumley T, Jenny NS. The sensitivity and specificity of markers for event times *Biostatistics* **7**:182–197, 2006.
- \blacktriangleright Heagerty PJ, Zheng Y. Survival model predictive accuracy and ROC curves. *Biometrics* **61**:92–105, 2005.
- ▶ Zheng Y, Heagerty PJ, Semi-parametric estimation of time-dependent ROC curves for longitudinal marker data. *Biostatistics* **5**:615–632, 2004.

Imperfect reference test

▶ Albert PS, Dodd LE. A cautionary note on robustness of latent class models for estimating diagnostic error without a gold standard. *Biometrics* **60**:427–35, 2004.

- ▶ Albert PS, McShane LM, Shih JH, et al. Latent class modeling approaches for assessing diagnostic error without a gold standard. *Biometrics* **57**:610–19, 2001.
- ▶ Alonzo TA and Pepe MS. Using a combination of reference tests to assess the accuracy of a new diagnostic test. *Statistics in Medicine* **18**:2897-3003, 1999.
- \blacktriangleright Pepe MS, Janes H. Insights into latent class analysis. *Biostatistics* **8**:474-84, 2007.
- \triangleright Vacek PM. The effect of conditional dependence on the evaluation of diagnostic tests. *Biometrics* **41**:959-68, 1985.

Verification bias

- \triangleright Alonzo TA. Verification bias-corrected estimators of the relative true and false positive rates of two binary screening tests. *Statistics in Medicine* **24**:403–417, 2005.
- ▶ Alonzo TA and Pepe MS. Assessing accuracy of a continuous screening test in the presence of verification bias. *Journal of the Royal Statistical Society: Applied Statistics* **54**:173–190, 2005.
- ▶ Alonzo TA, Braun TB, Moskowitz CS. Small sample estimation of relative accuracy for binary screening tests. *Statistics in Medicine* **23**:21–34, 2004.
- \triangleright Alonzo TA, Kittelson JC. A novel design for estimating relative accuracy of screening tests when complete disease verification is not feasible. *Biometrics* DOI: 10.1111/j.1541-0420.2005.00445.x (early online access).
- \triangleright Begg CB and Greenes RA. Assessment of diagnostic tests when disease verification is subject to selection bias. *Biometrics* **39**:207-15, 1983.
- \triangleright Kosinski AS and Barnhart HX. Accounting for nonignorable verification bias in assessment of diagnostic tests. *Biometrics* **59**:163-71, 2003.
- ▶ Obuchowski NA, Zhou X. Prospective studies of diagnostic test accuracy when disease prevalence is low. *Biostatistics* **3**:477-92, 2002.
- \triangleright Pepe MS and Alonzo TA. Comparing disease screening tests when true disease status is ascertained only for screen positives. *Biostatistics* **2**:1–12, 2001.
- \triangleright Pepe MS and Alonzo TA. Reply to Letter to Editor regarding Alonzo TA and Pepe MS, Assessing the accuracy of a new diagnostic test when a gold standard does not exist. *Statistics in Medicine* **20**:656–660, 2001.
- \triangleright Punglia et al. Effect of verification bias on screening for prostate cancer by measurement of PSA. *NEJM* **349**:335-42, 2003.