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Biomarkers for...

Diagnosis: disease versus non-disease
Screening: early diagnosis
Prognosis: predicting outcome

Examples
I clinical signs / symptoms
I laboratory tests
I gene expression technology
I proteomics
I combinations of any of the above

How to evaluate their accuracy?
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Measures of Accuracy for Binary Markers



Classification Probabilities

D = outcome (disease)
Y = binary marker

D = 0 D = 1
Y = 0 True negative False negative
Y = 1 False positive True positive

false positive fraction = FPF = P[Y = 1|D = 0] = 1 - specificity
true positive fraction = TPF = P[Y = 1|D = 1] = sensitivity

Ideal test: TPF = 1 and FPF = 0



Classification Probabilities, cont’d

I condition on disease status
I describe test accuracy
I helpful to public health researchers: should the test be

used?
I helpful to individual: should I have the test?



Predictive Values

positive predictive value = PPV = P[D = 1|Y = 1]
negative predictive value = NPV = P[D = 0|Y = 0]

Ideal test: PPV = 1 and NPV = 1

I condition on test result
I require cohort study to estimate
I depend on TPF, FPF, and prevalence (ρ)

PPV = ρTPF/(ρTPF + (1-ρ)FPF)
NPV = (1-ρ)(1-FPF)/((1-ρ)(1-FPF) + ρ(1-TPF))

I describe predictive capacity of test
I given my test result, how likely is it that I’m diseased?



Example: Diagnosis of CAD
Y : exercise stress test
D : coronary artery disease

D = 0 D = 1
Y = 0 22.3% 14.2% 36.5%
Y = 1 7.8% 55.6% 63.4%

30.1% 69.8% 100%

TPF = 0.797, FPF = 0.259, ρ = 0.698
PPV = 0.877, NPV = 0.611, τ = 0.634

I CAD detects 80% of diseased subjects and incorrectly
identifies 26% of non-diseased as suspicious

I 88% of test positives and 39% of test negatives have
disease

From The Statistical Evaluation of Medical Tests for Classification and Prediction
by Margaret S. Pepe, Ph.D., Oxford University Press, 2003



Inappropriate Commonly Used Measures

I misclassification rate (MCR)
I odds ratio



MCR

I = P[Y 6= D]
= P[Y = 1|D = 0]P[D = 0] + P[Y = 0|D = 1]P[D = 1]
= FPF ∗ (1− ρ) + (1− TPF) ∗ ρ

I ignores differential importance of false negative and false
positive errors

I depends on the prevalence (ρ)
I eg, if P[Y = 1|D = 1] = P[Y = 1|D = 0] = 0 with low ρ,

MCR low
I used a lot in statistics, not in medical settings



Odds Ratio

I = TPF∗(1−FPF)
FPF∗(1−TPF)

I measure of association, not classification
I good classification ⇒ huge odds ratios
I e.g., TPF = 0.80, FPF = 0.10 (a ‘good’ test)

I Odds Ratio = 0.80∗(1−0.10)
0.10∗(1−0.80) = 36
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I large odds ratio does not imply good classifier
I need to report FPF and TPF separately

From Pepe et al. AJE 2004; 159:882–90.



Measures of Accuracy for Continuous Markers



Classification Accuracy for a Continuous Test

Continuous marker, Y
I most markers

The ROC curve generalizes (FPF, TPF) to continuous markers

I thresholding rule: ‘positive’ if Y ≥ c
I TPF(c) = P[Y ≥ c|D = 1]

FPF(c) = P[Y ≥ c|D = 0]

I ROC(·) = {(FPF(c), TPF(c)), c ε (−∞,∞)}
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Attributes of the ROC
I shows entire range of possible performance
I puts different tests on a common relevant scale

ABR
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hearing impaired

Figure 4.3  Probability distributions of test results for the DPOAE and ABR 
 tests among hearing impaired ears and normally hearing ears.

From The Statistical Evaluation of Medical Tests for Classification and Prediction
by Margaret S. Pepe, Ph.D., Oxford University Press, 2003
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Figure 4.4  ROC curves for the DPOAE and

 ABR tests.

DPOAE
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I two tests have similar ability to distinguish between
hearing-impaired and normal ears

From The Statistical Evaluation of Medical Tests for Classification and Prediction
by Margaret S. Pepe, Ph.D., Oxford University Press, 2003



Choosing a Threshold

Formal decision theory:

Expected cost(c) = ρ(1− TPF (c))CD + (1− ρ)FPF (c)CN

CD is the cost of negatively classifying a diseased subject
CN is the cost of positively classifying a non-diseased subject

=⇒ cost minimized at the threshold c where the slope of the
ROC curve equals

1− ρ

ρ

CN

CD

I requires specifying costs CD and CN (tricky!)



Choosing a Threshold, cont’d

Common informal practice:
I fix maximum tolerated FPF
I eg must be very low (< 5%) for cancer screening test
I f0 = FPF → threshold = 1− f0 quantile among controls
I or fix minimum tolerated TPF
I eg must be very high in most diagnostic settings
I t0 = TPF → threshold = 1− t0 quantile among cases



Summary Measures of Classification Accuracy

I TPF = ROC(f0) at chosen FPF = f0
I percent cases detected for fixed FPF

I FPF = ROC−1(t0) at chosen TPF = t0
I FPF for fixed percent cases detected

I AUC =
∫ 1

0 ROC(f )df
I probability of correctly ordering a randomly chosen case

and control observation
I little clinical relevance
I summarizes TPF over entire FPF range

I partial AUC =
∫ f0

0 ROC(f0)df
I restricted ROC region, but little clinical relevance
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Example: Pancreatic Cancer Data

I marker sought for screening for pancreatic cancer
I data on two markers: CA 19-9 and CA 125
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From The Statistical Evaluation of Medical Tests for Classification and Prediction
by Margaret S. Pepe, Ph.D., Oxford University Press, 2003



AUC for CA 125 = 0.71
AUC for CA 19-9 = 0.89
p-value = 0.007
=⇒ the probability of correct ordering is 18% higher with CA
19-9

ROC(0.2) for CA 125 = 0.49
ROC(0.2) for CA 19-9 = 0.78
p-value = 0.04
=⇒ CA 19-9 detects 29% more cancers with the same FPR =
0.2

I conclusions about ROC(0.2) are more clinically important
than those about AUC



Generalizing Predictive Values to Continuous
Biomarkers

I a relatively new area of research; not well developed



Evaluating Incremental Value



Incremental Value

I how much classification accuracy does the new marker
add to existing predictors?

I eg how much does CRP add to existing lipid
measurements and risk factor information in discriminating
between those who will and will not develop CVD?



How Best to Combine Markers?

I Y = (Y1, . . . , YP)

I the “best" combination is the risk score,
R(Y ) = P(D = 1|Y1, . . . , YP) McIntosh and Pepe
(Biometrics, 2000)

I “best" =⇒ No other combination of (Y1, . . . , YP) has a
(FPF, TPF) point above its ROC curve



To Combine Markers

I Estimate
R(Y ) = P(D = 1|Y1, . . . , YP)

I using logistic regression, neural networks, classification
trees, support vector machines, Bayesian modelling, . . . .

I logistic regression can be used with case-control data

I Calculate the ROC curve for R(Y ) (it’s just another
marker!)

I avoid overoptimism due to fitting and evaluating model on
same data

I split into training and validation data
I or use cross-validation



Evaluating Incremental Value

I new marker Y ∗, baseline markers Y1, . . . , YP

I compare the ROC curves for

P(D = 1|Y1, . . . , YP)

and
P(D = 1|Y1, . . . , YP , Y ∗)

I NOT quantified by β∗ in

g(P(D = 1|Y1, . . . , YP , Y ∗)) = β0+β1Y1+. . .+βPYP +β∗Y ∗



Pancreatic Cancer Example

I Y1 = log CA-19-9 Y2 = log CA-125
I combination β1Y1 + β2Y2 from fitting

logitP(D = 1|Y1, Y2) = α + β1Y1 + β2Y2

exp(β2) = 2.54 (p = 0.002)

I Y2 strongly associated with D



ROC(0.05) = 0.68 for CA 19-9
ROC(0.05) = 0.71 for combination of CA 19-9 and CA 125

I extremely common phenomenon



Phases of Biomarker Development



# Phase Objective Design
1 Preclinical

Exploratory
promising directions identified,
assess test reproducibility

diverse and
convenient cases
and controls

2 Clinical
Assay and
Validation

clinical assay detects
established disease, compare
test with standard of practice,
assess covariate effects

population based,
cases with
disease, controls
without disease

3 Retrospective
Longitudinal

biomarker detects disease early
before it becomes clinical (for
screening markers)

case-control study
nested in a
longitudinal cohort

4 Prospective
Screening

extent and characteristics of
disease detected by the test
and the false referral rate are
identified

Cross-sectional
cohort of people

5 Disease
Control

impact of screening on reducing
the burden of disease on the
population is quantified

randomized trial
(ideally)

From: Pepe et al. Phases of biomarker development for early detection of cancer. JNCI 93(14):1054–61, 2001.



Study Design Issues



Matching in Case-Control Studies

I randomly sample cases
I select controls matched to cases with respect to

confounders
I attempts to eliminate confounding
I eg Physicians’ Health Study

I evaluate PSA as a screening tool for prostate cancer
I for each case select 3 controls within 1 years of age of the

case
I cases tend to be older, older subjects tend to have higher

PSA =⇒ age is confounder
I matching on age attempts to correct for this



Implications of Matching

I must adjust for matching covariates in analysis
I unadjusted analysis is biased
I more complicated analysis

I can’t assess incremental value of marker over matching
covariates

I tends to increase efficiency



Selected Verification

I in prospective studies, may not be possible to obtain the
outcome (disease status) for all individuals

I too expensive (cost or resources)
I not ethical (eg biopsy)

I often biomarker value determines whether disease status
is verified

I eg, in study of PSA and DRE for prostate cancer screening,
biopsy recommended if PSA > 2.5 or DRE+

I selective sampling can lead to biased estimates of
accuracy – “verification bias" or “work-up bias"



Implications of Selected Verification

When comparing two binary biomarkers in paired study:
I those who test negative on both tests are not needed to

estimate relative TPF, FPF

When evaluating one binary biomarker:
I naive TPF,FPF are biased
I there are methods for correcting for verification bias
I all make untestable assumptions about the verification

mechanism
I verification may depend on unmeasured factors!

I lead to decreased precision of estimated TPF
I difficult to find settings with cost savings: reduction in

number verified offset by increased total sample size
I avoid selected verification whenever possible



Advanced Topics



Covariate adjustment

I adjust for covariates that impact the marker distribution in
controls

I eg center effects in multicenter studies
I analogous to covariate adjustment in studies of association
I the accuracy of the marker in a population with fixed

covariate value



ROC regression

I model covariate effects on biomarker accuracy
I eg disease severity
I fit regression model for ROC curve, as function of

covariates



Time-dependent ROC curves

I model biomarker accuracy as a function of time between
marker measurement and disease

I eg the accuracy of PSA may decline with increasing time
lag between sample collection and disease

I define time-dependent versions of TPF,FPF
I model accuracy as a function of time



Imperfect reference test

I account for lack of gold standard for D
I eg questionnaire to diagnose depression
I various statistical approaches ... but is this a statistical

problem?



Software

On DABS Center website: http://www.fhcrc.org/labs/pepe/dabs

I Stata packages for ROC analysis and sample size
calculations by Pepe et al.

I R programs for time-dependent ROC curves by Patrick
Heagerty



Websites

http://www.fhcrc.org/labs/pepe/dabs

DABS Center website. Contains datasets, software,
references...

http://faculty.washington.edu/∼azhou/books/software.doc
Lists some free and commercial computer programs. Also
available through the Wiley website for Statistical Methods in
Diagnostic Medicine by Zhou, Obuchowski and McClish, 2002.

http://xray.bsd.uchicago.edu/krl/roc_soft.htm

Charles Metz and colleagues at University of Chicago are
pioneers in ROC analysis software. Developed with a focus on
applications in radiologic imaging.
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