Stand Attributes and Stand Sampling Techniques PROBLEM SET 3 – Due 17 Feb 2016

- 1. <u>Stand Attributes.</u> Some information measured on a 0.1-acre fixed-area plot randomly located in a stand from a forest under your care is available (Table 1). Compute and report the following stand attribute descriptors to characterize present conditions.
 - a. number of trees per acre
 - b. stand basal area per acre
 - c. mean diameter, quadratic mean diameter
 - d. Stand Density Index (SDI), relative SDI, and Curtis' Relative Density (RD)
 - e. Mean height, Lorey's height, H40 (avg. height of 40 largest diameter trees per acre)
 - f. species composition, using tree frequency first, then using basal area as the basis
 - g. If stand b.h. age is 31 yr., what is Site Index according to King? Site Class? (Remember: For King's curves use only Douglas-fir trees to compute dominant height defined as the average height of trees in the 80th or higher percentile by DBH)

Challenges 2 & 3 are based on Figure 1, a "map" of a 40-acre "forest" exhaustively divided up into 0.10-acre plots. The numbers appearing in each "plot" represent 100's of bd-ft. on that plot.

- Systematic sampling. Use a random number generator to pick a starting plot for a 25 plot systematic sample with a random start. Mark the systematically selected plots on the map (Figure 1) and append it to your answer sheet. Compute mean volume **per acre**, its standard error, and a 90% confidence interval. Compute the observed margin of error, E (the half-width of the confidence interval), you observed. From this, find observed percent error (E%).
- 3. <u>Sample size calculation</u>. Find the sample size necessary to achieve an allowable error, E%, of the same size as was observed as in (2), but instead using 70% confidence. Explain how your computed sample size compares with n = 25 from question (2).
- 4. <u>Ratio Estimation</u>. Weight scaling of sawlogs. We want to estimate the total volume of N truckloads of timber removed from a particular timber sale. Each truckload of logs has to be weighed (W in pounds) to pay the truckers, so we randomly sample n= 4 (*) of the N = 10 truckloads and scale the logs for board foot volume (V in BF). The data follow:

Load:	1	2*	3	4*	5	6*	7	8*	9	10
W (lbs):	51,000	43,600	68,000	60,000	52,000	49,400	56,000	63,000	48,000	54,000
V (BF):	_	5,000	-	5,600	-	5,800	_	6,400	-	-

Derive an estimate for total volume using the ratio-of-means and a 90% confidence interval.

- 5. <u>Double Sampling.</u> [*Extra Credit.*] A very homogenous longleaf pine stand was systematically sampled using a sample size of six 1-acre plots and resulted in the data appearing in Table 2.
 - a. What is the estimate of volume per acre from this systematic sample?
 - b. Calculate the standard error of the estimate in part a.
 - c. Now suppose that as part of the sampling tree counts only were obtained on ten additional plots. The number of trees observed on these plots is as follows:

7, 11, 10, 7, 8, 10, 8, 6, 10, 5.

What is the double-sampling estimate of volume per acre?

- d. Calculate the standard error of the estimate in part c.
- e. How do the two standard errors (from b and from d) compare? What is the relative efficiency of double sampling compared to systematic sampling for this case?

PLT	SPP.	DBH (in.)	<u> </u>
1	202	5.5	45.8
1	202	5.6	45.8
1	202	6.8	56.7
1	202	7.5	62.5
1	202	7.7	64.2
1	202	8.8	73.3
1	202	9	75
1	202	9.2	76.7
1	202	10.2	85
1	202	10.2	85
1	202	10.5	87.5
1	202	10.6	88.3
1	202	11.4	95
1	202	11.5	95.8
1	202	11.5	95.8
1	202	11.5	95.8
1	202	11.8	98.3
1	202	12.1	100.8
1	202	12.5	104.2
1	202	12.8	106.7
1	202	12.8	106.7
1	202	14.1	117.5
1	202	14.3	119.2
1	202	14.9	124.2
1	202	15.1	125.8
1	351	4.5	37.5
1	351	5.1	42.5
1	351	5.4	45
1	351	6.5	54.2
1	351	6.8	56.7
1	351	11.5	95.8
1	492	5.8	48.3
1	492	6.5	54.2
1	920	4.7	39.2
1	920	4.9	40.8
1	920	5.2	43.3

Table 1. Data from a 1/10-acre, fixed-area, circular plot (PLT) no. 1, in a 2nd-growth Douglas-fir forest. (NOTE: SPP = 202 is Douglas-fir, 492 is Pacific dogwood, 351 is red alder, 920 is willow)

Table 2. PLT refers to plot, No. Trees is the number of trees measured on the plot, Vol/ac refers to cubic-foot volume of longleaf pine trees.

		/ I
PLT	No.Trees	Vol/ac
1	10	3523
2	7	2546
3	6	2201
4	9	3458
5	9	3520
6	9	3404

Measured volume on 0.1-acre plots in a 40 acre forest tract

(in 100 boardfeet)

	_																		
22	26	26	19	34	18	17	25	20	28	0	0	2	0	6	0	3	0	0	4
21	18	23	22	28	24	33	36	23	15	17	0	2	11	15	0	17	5	2	8
30	28	23	21	29	18	14	30	25	28	20	14	8	1	15	2	5	0	0	4
28	19	21	20	26	20	38	23	20	27	24	11	6	4	0	5	5	9	2	5
17	14	20	26	25	22	22	19	15	20	25	26	15	9	12	0	0	16	8	5
38	42	37	39	22	44	47	17	25	29	34	39	20	24	14	10	12	1	0	0
43	34	23	46	47	46	39	35	31	30	24	35	23	26	18	25	21	12	5	1
36	45	47	36	35	29	49	44	31	42	33	47	31	28	15	18	20	23	9	12
38	48	42	51	17	54	47	52	30	34	30	46	24	12	21	12	32	29	27	16
17	24	45	47	52	28	43	45	46	27	40	32	51	28	25	41	20	27	14	21
47	56	43	37	30	60	56	43	29	33	41	30	30	20	15	18	20	23	13	28
38	36	27	38	24	31	48	32	25	31	35	31	22	15	10	24	22	19	18	16
46	54	34	46	37	43	44	34	25	44	43	40	28	14	26	33	18	34	17	31
47	47	35	40	39	39	50	28	50	36	44	27	16	21	36	17	27	21	33	31
22	37	11	29	28	33	29	35	53	18	26	20	29	12	23	25	15	17	26	21
37	22	20	22	14	29	25	21	30	31	27	16	21	36	17	27	21	17	14	12
18	25	26	20	27	26	26	22	19	30	15	2	7	3	4	15	9	7	0	3
22	34	37	17	24	28	26	25	30	33	18	6	0	3	0	0	6	5	7	6
13	28	27	27	31	20	21	21	16	27	12	0	17	3	1	1	0	0	0	5
32	31	30	22	16	26	8	32	19	22	3	3	0	0	0	2	0	5	10	2

Figure 1. "Map" of example population for use in designing a SYStematic sample (SYS) survey with random start.