Tree Biomass; Growth & Yield

Problem Set 4 – Due Tu 15 Mar 2016

- 1. Compute (ie., estimate) the total above ground biomass and biomass of roots for the following set of trees. Use the process outlined in class, which starts with a volume equation, converts it to biomass of stem, then employs Jenkins' system to derive biomass of components. Trees are immature, growing in the coastal region.
 - a) Western hemlock tree with DBH = 21.9 in., Total Height = 115.0 ft.
 - b) Western red cedar tree w/ DBH = 18.2 in., Total Height = 123.0 ft.
- 2. Suppose a tree with DBH equal to 12.2 in. grows with a constant basal area increment of 0.10966 sq. ft every 4 years over the next 16 years.
 - a) Compute the *diameter* increment for this tree for each 4-year periods.
 - b) With a constant basal area increment, is the diameter increment constant, increasing, or decreasing?
- 3. The following excerpted data were collected from a complete stem analysis on a loblolly pine tree that was 50-ft tall at time of felling. The tree was bucked into 10-ft sections (except of course for the tip.

Section Ht.	Average	Section Ht. above	Avg. diameter
above ground (ft)	Diameter (in.)	ground 8-yr previous (ft)	8 years previous (in.)
1	14.6	1	12.1
11	12.8	11	10.7
21	10.5	21	9.0
31	8.7	31	7.5
41	5.2	41	4.3
50	0.0	43	0.0

a) Compute growth percent for height over the 8-yr period.

- b) Compute growth percent for DBH over the period (you will need to linearly interpolate from adjacent section heights).
- c) Calculate growth percent in volume (assuming a cylinder for the stump, paraboloid frusta for middle sections, and a cone for the tip).
- d) Comment on how the previous three growth percent figures compare hypothesize why they may be different.
- 4. Consider a stand that is 65 years old yielding 52,300 BF per acre.
 - a) What is the Mean Annual Increment (MAI)?
 - b) The stand is measured 10 years later. It yields 55,700 BF per acre. What is Periodic Annual Increment (PAI) for the ten-year period?
 - c) What is Growth Percent for the ten-year period?
 - d) Do you think Culmination Point has been reached in this stand?
- 5. Use the Total Stand Projection method to predict per acre volume 10 years from now in a stand of Douglas-fir that now carries 200 sq. ft basal area / acre, 8280 cu.ft / acre, and has a dominant height of 110 ft. Site Index for this stand is 130 ft @ 50 yr breast height age (according to King). (HINT: You will need to consult a normal yield table for purposes of computing N%, i.e., percent normality.)