11.0 Assessing Stand Growth \& Yield (to quantify its nature)

Only PAST growth of trees \& stands can be measured directly - future growth must be predicted (projected / estimated / extrapolated).
Yield of standing trees is measured by recording age and the variable of interest at a single point in time

- Easily accomplished by installing and measuring TSPs (Temporary Sample Plots) Growth measurement is more problematic
- DBH growth can be measured directly from increment cores
- Height growth can be measured in species that have distinct annual whorls
- Direct measurement of growth of any other variables at any single point in time requires destructive sampling of tree through stem analysis
(e.g., Kantavichai, R. 2012. Effect of climate and thinning on coastal Douglas-fir annual biomass growth at four sites. PhD Dissertation, SEFS, UW, Seattle, WA 98195).

Monitoring becomes important for collecting the data necessary for growth estimation

- Growth of stands can be measured using PSPs (Permanent Sample Plots)
- Large and expensive, usually located selectively or systematically, seldom randomly
- Continuous Forest Inventory (CFI) plots are located systematically
- Generally CFI plots make use of sub-plots (small trees, understory, etc.)
- Many problems can occur:
- Loss of plots (natural catastrophe, vandalism, harvest, ...)
- Loss of trees on plots
- Missing measurements
- Measurement interval depends on speed of change in stand
- Typically 5-10 yr.
- Information needed from PSPs must be anticipated

Ubiquitously observed, quasi-quantitative, general trends

Estimating (extrapolating, projecting, predicting, forecasting) G \& Y Use past growth, present stand conditions \& biological knowledge and assumptions to project growth

Two chief methodologies

1. Direct Methods

Based on an analysis of a given stand from measured variables
i) Total Stand Projection
ii) Stand Table Projection
2. Indirect Methods

Make use of growth or yield information from tables or equations based on stands OTHER than the given stand, but similar in constitution, composition, ...

11.1 Components of Forest Growth

(Read: Beers, T.W. 1962. Components of forest growth. J. For. 60: 245 - 248, for complete treatment of the topic.)
Gross Growth - The difference in yield of living trees between the beginning (time 1) and end (time 2) of a defined time period $\left(Y_{2}-Y_{1}\right)$, less the yield from any ingrowth (I), plus the harvest (C) and mortality (M) that took place over the period. In equation form, it is expressed as

$$
\mathrm{G}_{\mathrm{g}}=\mathrm{Y}_{2}-\mathrm{Y}_{1}-\mathrm{I}+\mathrm{C}+\mathrm{M} \quad \text { (a.k.a. gross growth of initial volume) }
$$

Net Growth - The difference in yield of living trees between the beginning and end of a period less ingrowth plus harvest. It equals gross growth less mortality. In equation form it is expressed as

$$
G_{n}=Y_{2}-Y_{1}-I+C
$$

MAI - Mean Annual Increment. The average growth rate (i.e., the average production) of a stand attribute over the course of its life (from age " 0 " to the present age). Expressed mathematically:

$$
M A I_{t}=\frac{Y_{t}}{t} \quad\left(\text { NOTE: } \mathrm{MAI}_{\mathrm{t}} \text { can be expressed as net or gross. }\right)
$$

Because

$$
\begin{aligned}
& Y_{t}=\sum_{i=1}^{t} G_{n i}, \quad \text { then } \\
& \text { Net } M A I_{t}=\frac{\sum_{i=1}^{t} G_{n i}}{t} \\
& \text { Gross MAI }=\frac{\sum_{i=1}^{t}\left(G_{n i}+M_{i}\right)}{t}=\frac{\sum_{i=1}^{t} G_{g i}}{t}
\end{aligned}
$$

CAI - Current Annual Increment (yearly growth). Calculated as the difference in yield between two consecutive years or as the first derivative of a mathematical equation depicting yield as a function of time:

$$
C A I_{t}=Y_{t}-Y_{t-1}=d Y(t) / d t
$$

11.2 Direct Methods of Growth Forecasting (Prediction): TSP \& STP

Total Stand Projection

Recall the combined variable tree volume equation

$$
\begin{aligned}
& v= f \cdot b \cdot h \\
& \text { where } \quad f=\text { tree form factor } \\
& b=\text { tree basal area } \\
& h=\text { tree height }
\end{aligned}
$$

Similarly, pertains to the stand as well

$$
\begin{aligned}
\qquad= & \bar{f} \cdot B \cdot H \\
\text { where } \quad & \bar{f}=\text { stand average form factor } \\
& B=\text { stand basal area } \\
& H=\text { stand average height }
\end{aligned}
$$

Assuming the above, and letting 0 (zero) denote a past measurement, 1 denote current measurement, and 2 denote the future time for which an estimate is desired, then

$$
\frac{V_{2}}{V_{1}}=\frac{\bar{f}_{2} \cdot B_{2} \cdot H_{2}}{\bar{f}_{1} \cdot B_{1} \cdot H_{1}}
$$

Further assuming stand average form does not change much over reasonably short intervals, say $5-20$ years (depending on stage of stand development), then

$$
\frac{V_{2}}{V_{1}}=\frac{B_{2} \cdot H_{2}}{B_{1} \cdot H_{1}} \quad \Rightarrow \quad V_{2}=V_{1}\left(\frac{B_{2} \cdot H_{2}}{B_{1} \cdot H_{1}}\right) \quad \text { (a.k.a. the "two-way" method) }
$$

Prediction of stand basal area and stand height at time 2 (in the future) are the key
For basal area,

$$
B_{2}=B_{1}+I_{B}
$$

where $\quad I_{B}=$ predicted stand basal area Increment

$$
\doteq B_{1} \cdot \frac{G \%}{100}=B_{1}\left(\frac{Q M D_{1}^{2}-Q M D_{0}^{2}}{Q M D_{1}^{2}}\right)=B_{1}\left(\frac{\sum d b h i b_{1}^{2}-\sum d b h i b_{0}^{2}}{\sum d b h i b_{1}^{2}}\right)
$$

For height,

$$
H_{2}=H_{1}+I_{H}
$$

where $\quad I_{H}=$ predicted stand Height Increment

$$
=H_{1}-H_{0}, \text { for trees w/ determinant growth, or } \doteq H_{d_{2}}-H_{d_{1}} \text {, for those w/o }
$$

Calculated from direct observation in those species with distinct annual whorls or estimated from site curves for those species without

Stand Table Projection

Method creates future stand / stock tables from the current ones using actual past diameter growth

- Past performance may not be the best indicator of future growth, esp. if stand structure changes drastically due to natural or anthropomorphic disturbances
- Best results are achieved if projection period is $5-10$ years at most
- Method deals with site / density implicitly
- Two different ways to predict how trees will grow
- Like other trees that in the past were their size now (most realistic?)
- Like they did in the past (most typical assumption)
- Three alternative methods for assigning increment to DBH classes
- Apply average DBH increment to midpoint of the class - fails to account for dispersion of sizes within the class
- Apply average DBH increment to trees in the class assuming they are uniformly distributed within the class - most commonly applied assumption (Growth Index Ratio, GIR method)
- Apply variable diameter increment to actual diameters within the class

Example Stand Table Projection
(Direct method of growth prediction)
Understocked, immature ponderosa pine stand We desire stand information ten years hence

DBH class width is 4 inches
Grow th Index Ratio (GIR) $=\frac{\text { Avg. } I_{n c}}{\text { class width: }}$
for 2° class $G I R=\frac{3}{4}=0.75$

11.3 Indirect Methods of Estimating Growth \& Yield: Tables \& Functions

Two methods

- Yield tables (equations)
- Computerized forest simulation models

Yield Tables

- Display stand conditions at various ages in tabular format
- Information varies considerably, but vol/acre is usually included
- Different tables for different species groups and site classes

The different types of yield tables available trace the history of the advancements in the field of G \& Y

- Normal yield tables (McArdle, Meyer, and Bruce 1949, rev. 1961-"Bulletin 201")
- Stands fully utilizing the growing space (occupying the site)
- Do not really portray historical development of any individual stand
- Few stands in nature are truly Normal
- Under certain assumptions can be used to predict growth \& yield
- Empirical yield tables (Chambers and Wilson 1972)
- Average conditions of stands across the landscape
- Roughly the same advantages / disadvantages as Normal tables
- Variable-density yield tables (Buckman 1962. Growth \& Yield of Red Pine in Minnesota. USDA Tech. Bulletin 1272)
- Explicitly incorporate some measure of observed density into the prediction for yield (via mathematical equation) - adjusts yield estimates for density
- Managed stand yield tables (Curtis et al. 1981)
- Predict yield in stands that have experienced some treatment
- For ease of display and use, only a few regimes are included
- Tables themselves are usually generated by mathematical equations (growth models)

Normal yield table-based growth \& yield projections
The most typical assumption made is that growth in the observed stand is directly proportional to its normality percentage
Veracity of this assumption varies with species, age, site, density

Table 2.-Yield tables for Douglas fir on fully stocked acre, total stand
total nomber of trees

Age (years)	Site Class V		Sits Class IV			Site Class III			Site Class II			Site Class I		
	Site inder 80	Site index 90	Site inder 100	$\left\lvert\, \begin{gathered} \text { Site inder } \\ 110 \end{gathered}\right.$	Site index 120	Site inder 130	\int_{140} Site index 2	$\mid \underset{150}{\text { Site index }}$	$\mid \underset{160}{\text { Site index }}$	Site index	Site index 180	Site index 190	Site index 200	$\int_{210}{ }_{2 i t e}$ inder
20	Number 6, 020	Number	Number 4150	Number 3, 069	Number 2, 324	Number 1,815	Number 1, 460	Number 1,210	Number 1,012	Number 880	Number 756	Number 654	Number 571	Number 480
30.	2,700	2,200	1,800	1,472	1,219	1,030	865	735	640	555	483	408	350	300
40.	1,530	1,275	1,090	927	798	680	585	510	445	385	335	282	240	203
50.	1, 050	890	764	659	572	496	430	377	331	280	248	208	176	150
60.	780	670	580	500	439	380	337 274	296	281	1288	195	164 135	1138	118 98
80	625 525	537 455	468 394	405 345	352 303	310 286	274 232 2	242 207	182	188 159	160 136	135 115	113	95 81
880	451	398	347	304	288	235	203	180	158	138	118	100	84	71
100	403	352	311	271	239	209	184	161	142	123	108	89	75	64
110	382	319	281	247	217	188	168	146	128	111	95	81	60	58
120.	331	292	259	224	197	173	${ }_{141}^{152}$	134	116	$\stackrel{101}{94}$	87 80	74 69	$\begin{aligned} & 63 \\ & 59 \end{aligned}$	48
130	305	252	240	195	171	149	131	115	101	88	75	64	55	45
150	286	238	211	184	160	141	123	108	95	88	71	60	51	42
160.	250	225	200	175	152	133	117	102	90	78	67	57	48	40
DLAMETER OF AVERAGE TREE AT BREASTHEIGHT														
	Inches													
20.	13	1.5	1.8	2.2		3.0		3.8	4.2	45		8.3 8.3		6.2
30	2.6	3.0	3.4	3.9 5	4.4	4.9	5.5	8.0	6.5	7.0	7.6 10.2	8.3	${ }^{9.0}$	8.8 13.3
40.	3.8	4.4	6.9	7.5	7.7	6.8 8.5		10.1	10.9	11.8	12.8	14.0	15.3	16.7
50	4.9 6.0	5.6 6.8	6.3 7.6	7.0 8.5	7.7 9.3	8.8 10.2	${ }^{9} 11.1$	12.0	12.9	14.0	15.2	16.6	18.2	16.9 10.9
70	7.0	7.8	8.8	9.8	10.8	11.8	128	13.8	14.8	16.0	17.5	19.1	20.9	22.8
80.	7.9	8.9	9.9	10.9	12.0	13.1	14.3	15.4	16.6	17.9	19.6	21.3	23.3	25.5
90.	8.7	9.7	10.8	11.9	13.1	143	15.6	16.9	18.2	19.6	21.4	23.3	${ }^{25} 5$	280
100	9.4	10.5	11.6	128	14.2	15.5	16.9	18.2	19.7	21.2	${ }_{24}^{23.1}$	25.1	27.6	30.1
110	10.1	11.3	12.	13.7	15.2	16.6 17.6							329.1	
120	10.7 113	11.9 12.8	13.2 13.9	14.6 15.3	16.1	17.6 18.5	20.1	20.7 21.7	22.3 20.5	24.0 25.3	27.5	28.5 30.0	31.1	34.2 38.0
140	11.9	18.1	14.5	16.0	17.7	19.4	21.1	22.8	24.5	28.5	28.8	31.4	34.3	37.8
150	12.4	13.7	15.1	16.7	18.4	20.2	22.0	23.8	25.6	27.7	30.0	32.8	35.8	39.4
	12.9	14.2	15.7	17.4	19.1	21.0	22.8	24.7	28.6	28. 9	31.2	34.1	37.2	41.0

20.	Sq. ta_{64}	Sq. fip	Sq. fic $_{\text {fi }}$	Sq. ftr $_{81}$	Sq. ft.	Sq. ff.	Sq. f f.	Sq. $\mathrm{ff}_{\text {95 }}$	Sq. $\mathrm{ft}_{\text {g }}$	Sq. fic	Sq. ${ }_{\text {f }}$.	S9.f.f.	Sq. fid 101	S4.f. ${ }_{\text {in }}$
30.	98	105	114	122	129	${ }_{135}^{89}$	140	95 144 18	${ }_{147}^{97}$	150	159	153	154	${ }_{155}^{102}$
40	121	132	143	153	162	170	177	182	186	189	191	193	195	196
50	140	153	185	177	187	196	204	220	${ }_{237} 21$	217	220	222	224	226 250
60	154	169	182	${ }_{211}^{195}$	224	235 235	228	${ }_{251}^{232}$	235 256	${ }_{260}$	${ }_{264}^{244}$	246 256 25	248 268	250 270
80.	177	194	210	224	238	249	259	268	271	278	280	223	${ }_{285}^{285}$	287 287
90	185	204	220	235	249	282	272	279	285	290	294	297	299	301
100	193	${ }_{22}^{212}$	229	245	230	273	${ }^{283}$	291	297	302	306	309	312	314
120	206	226	235	231	227	282	332	${ }_{310}$	318	332	338	320	332	335 335
130.	213	233	251	228	234	298	309	318	325	331	335	338	341	344
140	${ }_{23}^{218}$	238 243	${ }_{223}^{257}$	275	291	3305	317	${ }_{333}^{338}$	333	338	343 3 35	347	350 357	353 360
160	227	248	${ }_{208}^{203}$	${ }_{287}^{281}$	${ }_{304}^{298}$	318	332	333 340	340 347	${ }_{3} 36$	351 357	361 361	${ }_{364}^{357}$	360 367
total yield in cubic feet														
	Cu.f.		Cu.f.											
20	5.520	620	${ }^{\text {cu. }} 73$	${ }^{8} 8.80$	${ }^{990}$	${ }_{\text {cui }}^{\substack{12 \\ 120}}$	cutic	Cu. 13.10	Cu. ${ }_{\text {1, }}$	Cu,	Cu, 1.650	Cu.	Cut, 8.3	
${ }_{40}^{30}$	1,330 2,110	1,610 2,520	- $\begin{aligned} & 1,930 \\ & 3,020\end{aligned}$	2,270 3,560	$\begin{array}{r}2,630 \\ 4,150 \\ \hline\end{array}$	2,980 4.690	1,300 5 5	3, ${ }_{\text {3 }} \mathbf{6 1 0}$	3,880	4,110 6.550	4,330 6.900	4,530 7,220	4,750 7.500	4.990
50	2,840	3,410	4,080	4,780	5,540	6,300	7, 7	7,730	8,300	8,840	6,320 9,300	9,770	$\begin{array}{r}1050 \\ 10,150 \\ \hline 1\end{array}$	10, 560
60	3,500	4.200	5.010	5,880	8,880	7,780	8 8,700	9,490	10, 200	10, 860	11, 450	12,000	12,500	12.960
880	4,090 4,580	5,930	5,820 6,530	6,830 7,690	8,000 8,000	9,100 10,240 10	10,150 11,350 11	11, 1100 12,400		12, ${ }_{11} 1260$	13,300 14,090 18	13,950 15 15 100	14,500 16,350 16	15,080 18,970
80	5,000		6,330 7,120	8,400	9,810	10,240 11,160	11, ${ }^{12} 350$	12,400 13	13,360 14,600	14, 14.240	14,090 16,400	15, $\begin{aligned} & 1700 \\ & 17,190\end{aligned}$	16,350 17,880	
100	5,350	6,420	7,620	9.000	10, 510	11, 940	13, 270	14,460	15, ${ }^{15} 600$	16,610	17, 550	18, 370	19,140	19,820
110.	5,640	6,780 7800	${ }_{8}^{8,050}$	${ }_{9}^{9,500}$	111,080	12.610	14,000	${ }^{15,290}$	16,500	17, ${ }^{1830}$	18, 510	19,390	20, 200	20, 980
130	${ }_{6} 6,130$	7,340	8,720	10, 290	12, 000	${ }_{13,60}$	15,	-13, 560	17, 170	19,000	20,000	20,980	21,	21,870 2660
140	Q, 340	7,600	8,020	10, 620	12,370	14.080	15,610	17,090	18,410	19,590	20,640	21,610	22, 520	22, 260
150	8, 8 8,520	7,810	${ }_{9}^{9,250}$	10, ${ }^{11200}$	- 12.710	- 14.490	16, 160	17, 1800		20, 3130	21, 270 21.820	22.250 2280	23, ${ }^{23} 170$	24.030
	0,60	8,000	9,500	11, 200	13,040	14,850	16,490	18, 010	19,380	20.650	21,820	22,830	23,780	24,660

From: McArdle, R.E., W.H. Meyer, D. Bruce. 1930 (rev. 1949, 1961). The yield of Douglas fir in the Pacific Northwest. US Dept. Agriculture, Washington, D.C. Tech. Bull. 201. 74 p.

Example.

We have observed a 52-yr old stand of Douglas-fir with site index 140 ft at 100 years and $5,280 \mathrm{ft}^{3}$ of standing volume per acre. We desire an estimate of volume ten years from now at age 62.
Normal yield at age 52 (interpolated from Bulletin 201 Table 2): $7380 \mathrm{ft}^{3} /$ acre.
$\%$ Normality $=\frac{5280}{7380}(100)=71.5 \%$
Normal yield age 62 years (interpolated from Bulletin 201 Table 2): $8990 \mathrm{ft}^{3} /$ acre.
Expected Normal $P A I_{52-62}=\frac{8990-7380}{10}=161 \mathrm{ft}^{3} /$ acre per year
Growth expected if it's proportional to current Normality percentage is
$0.715 \times 161 \mathrm{ft}^{3} /$ acre $/$ year $=115.1 \mathrm{ft}^{3} /$ acre $/$ year
This corresponds to $1151 \mathrm{ft}^{3}$ of periodic growth in ten years
Thus, expected yield ten years hence (at age 62) is the sum of current yield and increment (or growth)
$5280 \mathrm{ft}^{3} /$ acre $+1151 \mathrm{ft}^{3} /$ acre $=6431 \mathrm{ft}^{3} /$ acre

Table A Comparison of McArdie's 100-Year Table and King's 50-Year Table

Table 3.-Yield tables for Douglas fir on fully stocked acre, trees 7 inches in diameter and larger number of trees

Age (years)	Site Class V		Site Class IV			Site Class III			Site Class II			Site Class I		
	Site index	Site index		Site index										
	${ }_{80}$	$\begin{gathered} 8 \\ 90 \end{gathered}$	$\left\{\begin{array}{c} \text { Site index } \\ 100 \end{array}\right.$	$\left\lvert\, \begin{gathered} \text { Site index } \\ 110 \end{gathered}\right.$	$\begin{gathered} \text { Site index } \\ 120 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Site index } \\ 130 \end{gathered}\right.$	$\underset{140}{\text { Site inder }}$	Site inder 150	Site index	${ }_{170}^{\text {Site index }}$	$\underset{180}{\text { Site inder }}$	$\left\lvert\, \begin{gathered} \text { Site index } \\ 190 \end{gathered}\right.$	$\begin{gathered} \text { Site inder } \\ 200 \end{gathered}$	$\begin{gathered} \text { Site index } \\ 210 \end{gathered}$
20	Number													
30	0	0	31	82	121	16	199		78			134		
40.	70	124	173	217	250	278	192	298	235 300	248 288	254 269	245 245	247 218	235 192
50	170	220	261	290	311	322	318	302	282		231	201	173	198
60	234	276	306	326	322	308	291	269	244	218	190	162	137	116
70.	275	305	322	316	299	279	255	231	207	183	158	134	113	95
80.	298	318	312	296	275	250	225	202	179	157	136	115	97	81
90	304	307	295	274	250	224	200	177	156	137	118	100	84	71
100	301	293	276	252	229	204	182	160	141	123	108	89	75	64
110.	292	278	259	235	210	186	165	145	128	111	95	81	69	58
120	279	263	243	218	193	171	152	134	116	101	87	74	63	53
136	267	250	229	204	181	159	141	124	108	-94	80	69	59	49
140	256	237	216	192	169	149	131	115	101	88	75	64	55	45
150	245	227	205	182	160	141	123	108	95	82	71	60	51	42
160.	235	217	198	173	152	133	117	102	90	78	67	57	48	40

DIAMETER OF AVERAGE TREE AT BREASTHEIGHT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 20. \& Sq. ft. \({ }_{0}\) \& Sq.ft. \& Sq. ft. \& S9.f. \& Sq. ft. \\
\hline \({ }^{30}\) \& 0 \& 0 \& 10 \& \({ }_{26}^{0}\) \& \({ }_{42}^{0}\) \& 0
58 \& \({ }_{74}^{2}\) \& (\({ }_{88}^{14}\) \& 26
100 \& 34
112
12 \& + \({ }^{42}\) \& \% \(\begin{array}{r}50 \\ 131\end{array}\) \& 54.59 \& \({ }^{\text {c }}\). 67 \\
\hline 40 \& \({ }_{20}^{22}\) \& \({ }_{48}^{43}\) \& 63 \& 84 \& 106 \& 124 \& 141 \& 154 \& 165 \& 112 \& \begin{tabular}{l}
182 \\
181 \\
\hline 1
\end{tabular} \& \(\begin{array}{r}131 \\ 186 \\ \hline\end{array}\) \& 139
190 \& 148
194 \\
\hline 60 \& \({ }_{95}^{60}\) \& \(\begin{array}{r}86 \\ 124 \\ \hline\end{array}\) \& 109
148 \& 133
171
171 \& 154
190
190 \& \({ }_{208}^{172}\) \& 186

218 \& 198 \& ${ }^{206}$ \& ${ }^{213}$ \& 217 \& 221 \& 224 \& 226

\hline 70 \& 124 \& 152 \& 178 \& 197 \& | 190 |
| :--- |
| 215 |
| 1 | \& ${ }_{229}^{206}$ \& | 240 |
| :--- |
| 248 |
| 18 | \& ${ }_{228}^{227}$ \& 234

254
254 \& 239
259 \& 243
263 \& 245
266

20 \& 248
268 \& 250

\hline ${ }_{90}^{80}$ \& | 148 |
| :--- |
| 165 |
| 18 | \& 174

190
19 \& ${ }^{196}$ \& ${ }_{221}^{216}$ \& ${ }_{233}^{238}$ \& ${ }_{247}^{247}$ \& 257 \& 264 \& 271 \& 278
278 \& 280 \& 283

283 \& 285 \& | 287 |
| :--- |
| 28 |

\hline 100 \& 178 \& | 190 |
| :--- |
| 203 | \& ${ }_{224}^{221}$ \& $\begin{array}{r}242 \\ 242 \\ \hline\end{array}$ \& | 248 |
| :--- |
| 258 |
| 28 | \& ${ }_{272}^{261}$ \& 283

283 \& ${ }_{291}^{279}$ \& 285
297 \& 290
302 \& 294
306 \& 297
309 \& 299
312 \& 301

\hline ${ }_{120}^{120}$ \& 189
189 \& 213 \& 234 \& 252 \& 268 \& 281 \& 292
292 \& 301 \& 297

307 \& ${ }_{313}^{302}$ \& | 306 |
| :--- |
| 317 | \& 309

320 \& | 312 |
| :--- |
| 323 | \& 314

325

\hline 130 \& 199 \& ${ }_{229}^{222}$ \& 243
250 \& 260
267 \& ${ }_{224}^{277}$ \& ${ }_{29}^{20}$ \& ${ }_{309} 309$ \& 310 \& 316 \& 322 \& ${ }^{326}$ \& 329 \& 332 \& 335

\hline 140. \& 213 \& 236 \& 258 \& $\stackrel{274}{ }$ \& ${ }_{291}^{294}$ \& ${ }_{305}^{298}$ \& | 309 |
| :--- |
| 317 | \& 318

326 \& \begin{tabular}{l}
325

333

\hline

 \&

331

338

\hline

 \&

335

343

\hline

 \&

338

347

\hline
\end{tabular} \& 341

350 \& 344

\hline ${ }_{1}^{150}$ \& 219
225 \& ${ }_{248}^{242}$ \& 263 \& 281 \& ${ }_{298}^{298}$ \& 312 \& 324 \& 333 \& 340 \& ${ }_{346}$ \& ${ }_{351}$ \& 347
354 \& ${ }_{357}$ \& 303
360

\hline 160 \& 225 \& 248 \& 268 \& 287 \& 304 \& 318 \& 331 \& 340 \& 347 \& 353 \& 357 \& 361 \& 364 \& 367

\hline \multicolumn{15}{|c|}{Yield in cubic feet}

\hline 20. \& Cu.ft. ${ }_{0}$ \& Cu.ft. \&

\hline ${ }_{40}^{30}$ \& 0 \& ${ }^{0}$ \& 280 \& \& \& \& \& \& \& 590
3,270 \& 760
3,660 \& . 9500 \& 1,170
4,370 \& $\begin{array}{r}1,330 \\ 4 \\ \hline\end{array}$

\hline 40

50 \& ${ }_{3}^{380}$ \& ${ }^{930}$ \& 1,520 \& 2,180 \& 2, 8 , 850 \& 3,650 \& 4,360 \& 5,040 \& 5,640 \& 6,120 \& ${ }_{6,610}^{3,660}$ \& 7,000 \& 7,380 \& | 4,700 |
| :--- |
| 1800 |

\hline 60. \& | 1,320 |
| :--- |
| 2,340 | \& 2,080

3,280 \& 1,240

4,220 \& \begin{tabular}{l}
3,780

5,260

\hline

 \& ,

4,730

8,400

\hline

 \& \% ${ }_{5}^{5,690}$ \&

B,

8,500

8,500

\hline
\end{tabular} \& 7, 700 \& 8,100

8
18 \& ${ }_{8}^{8,720}$ \& 9,230 \& ${ }^{9,740}$ \& 10, 150 \& 10, 560

\hline 80 \& 3,230 \& 4, 4.260 \& ${ }_{5}^{4,300}$ \& ${ }_{6}^{6,490}$ \& $\begin{array}{r}\text { \% } \\ 7 \\ \hline\end{array}$ \& 8,970
8,880 \& 8,500
10,040 \& - 11.0208 \& 10,150
11,900 \& \& -11, ${ }_{13}^{11,400}$ \& 12,000
13,950 \& 12,500
14,500 \& 12,960
15,080

\hline ${ }_{90} 9$ \& 3,970
4,520 \& 5, $\begin{aligned} & \text { 5, } 680 \\ & 50\end{aligned}$ \& 6,200
8,920 \& 7,480
88

8 \& | 8,860 |
| :--- |
| 860 | \& 10, 170 \& 11, 1240 \& 12,400 \& 113,360 \& 14, 220 \& 14,990 \& ${ }^{15}$, 700 \& 16, 350 \& 16,970

\hline 100 \& ${ }_{5}^{5}$, 000 \& 6, 200 \& 77500 \& 8,930 \& 10, 990 \& 11,240 \& $\xrightarrow{13,270}$ \& - 13,460 \& 14,600
15,600 \& 15,540
16,810 \& 16,400
17,550 \& 17,190

18,370 \& | 17,880 |
| :--- |
| 19,140 |
| 18 | \& 18,500

19820

\hline 120 \& 5, ${ }_{5}$ \& 6,630 \& 7,960 \& ${ }^{9,470}$ \& 11, 080 \& 12,610 \& 14, 000 \& 15, 290 \& 18,500 \& 17,560 \& 18, 510 \& 19,390 \& 20, 200 \& 20, 940

\hline 130 \& 6,010 \& $\bigcirc 7$ \& 8,680 \& 10, 1090 \& 12,000 \& 13,180
13,650 \& - 14.6000 \& 15,290
16,560

1, \& 17,240
17870 \& 18,340
19,000 \& - ${ }_{20,000}$ \& 20, 22080 \& 21,000 \& 21, 870

\hline 140 \& ${ }^{6,240}$ \& 7,520 \& 8,980 \& 10,620 \& 12, 370 \& 14, 880 \& 15,610 \& 17,090 \& 18, 110 \& 19, 590 \& 20, 640 \& $2{ }^{21,610}$ \& $\xrightarrow{22,520}$ \& -22,360

\hline 160 \& 6,450
8,840 \& 7,750
7,970 \& ${ }_{9,500}^{9,280}$ \& 10,920
11,200 \& 12,710
13,040 \& \& 16,080 \& 17,560 \& 18, 910 \& 20, 130 \& 21, 270 \& 22, 250 \& ${ }^{23,170}$ \& 24,030

\hline \& \& 7,970 \& 8,500 \& 11,200 \& 13,040 \& 14,850 \& 16, 400 \& 18,010 \& 19,380 \& 20, 650 \& 21, 820 \& 22, 330 \& 23,780 \& 24, 660

\hline
\end{tabular}

Table 3.-Yield tables for Douglas fir on fully stocked acre, trees 7 inches in diameter and larger-Continued YIELD IN BOARD FEET, INTERNATIONAL RULE ($1 / \mathrm{f}$ INCH KERF)

Age (years)	Site Class V		Site Class IV			Site Class III			Site Class II			Site Class I		
	$\underset{80}{\text { Site index }}$	Site index	$\begin{gathered} \text { Site index } \\ 100 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Site index } \\ 110 \end{gathered}\right.$	${ }_{120}^{\text {Site index }}$	$\left\|\begin{array}{c} \text { Site index } \\ 130 \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Site index } \\ 140 \\ \hline \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { Site index } \\ 150 \end{gathered}\right.$	$\left.\right\|_{160} ^{\text {Site index }}$	${ }_{170}^{\text {Site index }}$	Site index	Site index 190	Site index 200	$\int_{210}^{\text {Site index }}$
20.	Bd. ft. ${ }_{0}$	$B d . f t .0$	Bd. ft. ${ }_{0}$	Bd. ft.	Bd. ft. ${ }_{0}$	Bd. ft. ${ }_{0}$	Bd. ${ }_{200}$	Bd. ${ }_{8}^{\text {fi. }}$	Bd. fi.	Bd. f. 2, 100	$B d . f t$. 2,800	$\begin{array}{r}\text { Bd. } \\ 3,900 \\ 3,0 . \\ \hline\end{array}$		
30.	,		1,000	2,400	4,300	6, 200	8,400	10,700	13, 300	18, 000	18,800	21,400	24,400	27, 000
40	1,500	3,800	6,400	9,200	13,400	17,400	${ }^{22,000}$	28,000	30, 500	- 34, 900	39,000	43,000	47,000	51, 500
50	5,900	9,500	13,600	19,000	25,100	31, 400	37, 100	43,300	49,200	55, 000	80,000	65, 200	70, 500	75,300
${ }^{60}$	10,500	15,900	${ }^{21,700}$	28,900	37,000	44,500	52,000	${ }^{69,500}$	68, 200	72, 800	79,000	85,100	90, 800	98, 200
70	15,400	${ }_{2}^{22,100}$	29, 500	37,900	${ }^{47,200}$	56,500	${ }^{65,600}$	74,300	82, 000	89,000	96,000	102, 400	108, 500	114,500
80	20,300	27, 800	36,300	45,700	56,300	66,800	-77, 200	86,800	955,200	103,200	110,900	118, 100	124, 700	131, 100
90	24,900	32,700	41,900	${ }^{52,200}$	${ }^{83,900}$	75,700	86, 700	96, 800	108, 100	114,700	123,000	130, 800	137, 700	144,000
100	28, 2800	37,200 41,000	46,700 51.300	58,100 63,200	70,600 76,300	83,000 89 8900	94,700 1015 100	105, 1300	115,100 123,400	124,400	133, 500	141,500	148, 900	
110	32,700 34	414,000	51,300 55,100	63,200 67,500	76,300 81,400	89,500 94,700	101,500 107,200	113,000 119,200	123,400 130,100	133,000 140	142,000 149,400	157, 1500	157,900 165,500	164,900 172,700
130	37,000	46,900	58,600	71,000	85, 800	${ }^{99}$, 300	112, 200	124, 200	136, 200	146, 500	155, 700	164,000	172,000	179, 500
140	39,200	49, 500	61, 400	74, 300	89,700	103, 500	116, 900	129, 900	141, 400	152,000	161, 300	160, 900	178, 000	185, 400
150	42,300	51,700	63, 900	77,500	93,000	107, 800	121, 100	134, 500	146, 100	156, 700	${ }^{166,500}$	175, 200	183, 300	190,900
160	43, 300	54,000	66, 200	80, 100	98, 000	110, 900	125,000	138, 900	150, 400	181, 100	171,400	180, 300	188, 100	196,000

Table 4.-Yield tables for Douglas fir on fully stocked acre, trees 12 inches in diameter and larger NUMBER OF TREES

Age (years)	Site Class V		Site Class IV			Site Class III			Site Class II			Site Class I		
	Site index	Site index	\int_{100}	Site index	Site in 3 es	Site index								
	Number	Ńumber	Number	Number										
30			0	0					0	0				10
40	0	${ }_{0}$	${ }_{0}$	7	16		${ }^{6}$	${ }_{49}^{12}$	18	27		46	57	${ }_{1}^{69}$
50	1	8	17	29	44	61	79	$\stackrel{97}{7}$	110	120	128	129	129	113 118
60	12	24	39	58	79	101	118	129	137	141	137	129	118	105
70 80	${ }_{44}^{27}$	45	${ }_{6}^{65}$	90	113	129	139 148 1	144	145	140	130	118	105	92
90	48	67 88	${ }_{112}^{92}$	114 130	132	143	148	148	${ }_{1}^{143}$	134	120	107	93	80
100	78	105	126	141	142 148 1	$\begin{array}{r}149 \\ 149 \\ \hline\end{array}$	149 145	$\begin{array}{r}145 \\ 137 \\ \hline\end{array}$	136 127	124 115	110 101	${ }_{88}^{97}$	84 75	${ }_{6}^{71}$
110	93	118	136	146	150	146	139	130	119	106	93	881	69	${ }_{58}$
130	105	127	142	149	148	142	${ }^{134}$	123	111	99	87	74	63	53
140.	122	138	148	149	145 142 	138	${ }_{128}^{128}$	116 110	105 99	93 87	80 75	${ }_{64}^{69}$	59 55	49
150	127	141	149	147	138	129	117	105	94	82	71	60	51	${ }_{42}^{45}$
	132	143	147	144	135	125	113	100	89	78	67	57	48	40
diameter of average tree at breastheioht														
	Inches													
${ }_{30}^{20}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\stackrel{0}{12.4}$		${ }_{12.7}^{0.7}$	${ }_{12}^{0.8}$		${ }_{13.2}^{12.4}$	13.4	12.6	
${ }_{40}^{30}$			$\stackrel{0}{12.4}$	${ }_{12}{ }^{6}$	${ }_{12}^{0} 7$		12.5			13.0			13.7	1.81.015.8
50	${ }^{0} 12.4$	12.6	12.8.	13.1	13.3	13.6	13.9	14.1	13.6 14.5	15.0	${ }_{15} 14.6$	14.7 16.3	15.2 17.1	
60	12.713.0	12.013.013.3	13.2	13.6	13.9	14.3	14.7	15.2	15.6	16.2	17.1	18.0	19.2	20.6
70			13.7	14.1	14.5	15.0	15.6	16.2	16.8	17.7	18.7	20.0	21.4	23.2
80.	13.313.613	13.7	14.1	14. 6	15.2	15.8	16.5	17.2	18.0	19.0	20.3	21.8	23.6	25.7
90		14.014.4	14.5	15. 1	15.9	16. 6	17.4	18.2	19.2	20.4	21.9	23.6	25. 6	28.0
10.	13.6 13.9		15.0	15.7	16.5	17.3	18.4	19.3	20.4	21.8	23.4	25. 3	27.6	30.1
10.	$\begin{aligned} & 13.9 \\ & 14.2 \end{aligned}$	14.7	15.4.	16. 2	17.1	18.1	19.2	20.3	${ }_{21.6}^{21.6}$	23.1	24.8	26.9	${ }^{29.4}$	32.2
120	$\begin{aligned} & 14.5 \\ & 14.8 \end{aligned}$$15.0$	${ }_{15.5}^{15.1}$	${ }_{18.2}^{15}$	16.7 17.2 18.	17.7 18.3	18.8 19.5 19.5	20.0 20.8	21.3	22.7	24.2	26. 2	28.5	31.1	34.2
140		15.816.816.1	16.6	17.7	18.9	20.2	21.6	23.2	24.7	26.6	28.8	31.4	34.3	36.0 37.8
150	15.015.315.6		17.0	18.1	19.5	20.8	22.4	24.0	25.7	27.8	30.0	32.8	35.8	39.4
160		16.4	17.4	18.6	20.0	21.5	23.1	24.9	26.7	28.9	31.2	34.1	37.2	41.0

Computerized simulation models

- Model is a representation of a real-world system (an abstraction)
- Come in a variety of forms
- May run the model yourself (DFSIM, ORGANON, LMS, etc.)
- Maybe only yield tables are available to you (eg., TASS)
- PSP data is required from remeasured plots to develop these models
- Come in several varieties
- Whole-stand models
- Input is avg. stand info such as SI, age, density (TPA, SDI, etc.), avg. DBH
- Output is the same
- Advantages / disadvantages
(+) Easy to use, easy to collect stand level info only
(+) Simple to develop
(-) Individual tree information is lacking
- Size class models
- Input: SI, age, density, coarse stand table
- Output: Provide info on structure of the stand [though limited]
- Compromise between whole-stand and single tree models
- Single-tree (individual-based), distance-independent (spatially implicit)
- Input: actual list of individual trees, their attributes, their Tree Factors
- Output: detailed tree attributes \& stand info (stand \& stock tables)
- Development requires PSP data with tagged trees, trees don't have to be stem-mapped
- Trees of similar diameter are grown individually or in groups according to mathematical functions then "summed" to arrive at stand level info.
- Single-tree, distance-dependent (spatially explicit)
- Input: actual list of individual trees, their attributes, their Tree Factors, AND their spatial locations (stem map)
- Output: detailed tree attributes \& stand info (stand \& stock tables)
- Usually can also provide info on changes in competitive status of tree due to thinning, pruning, insect defoliation, etc.
- Difficult to calculate a meaningful metric of spatially explicit, biological competition
- Expensive to run
- Usually, developing a useful, realistic G \& Y model is a time \& labor intensive project

11.4 Assessing the Assessments

If a G \& Y model is already available, it makes sense to assess how well it performs for the stand types under our management

Benchmarking
Comparing what a growth model predicted would happen with what actually happened

$$
\begin{aligned}
& \text { Error }=G-\hat{G} \\
& \text { where } G=\text { Actual Growth } \\
& \hat{G}=\text { Predicted Growth from growth model }
\end{aligned}
$$

This measure can be "swamped" by large differences on a few plots

$$
\text { Rel.Error }=\frac{G-\hat{G}}{\hat{G}}(100)
$$

Typically, the conclusion is to use the growth model when Relative Error is under 5 to 10%
When there are 2 or more models that could possibly be used, pick the one with the smallest Relative Error that is still under 5 to 10%.

Summary Ideas

Stand growth is usefully viewed as comprised of several parts: Measurable yield (Y) at two given points in time, Ingrowth (I), harvest (or cut, C), and mortality (M)

There are two chief ways to estimate growth \& forecast yield of a stand: Direct \& Indirect
Direct methods involve measuring at least one component of growth on the stand of interest, such as Total Stand Projection (TSP), and Stand Table Projection (STP);
Indirect methods rely on averages of many past observations in stands of similar nature to the one of interest, requiring only current yield estimates to make predictions, such as Yield Tables or Computerized Simulation models

Yield tables vary in complexity and utility; types include Normal, Empirical, Variable-density, and Managed-stand yield tables
Computerized simulation models also vary in complexity and utility for particular purposes; example types include, Whole-stand, Size-class, and Individual-tree (spatially implicit or spatially explicit)

