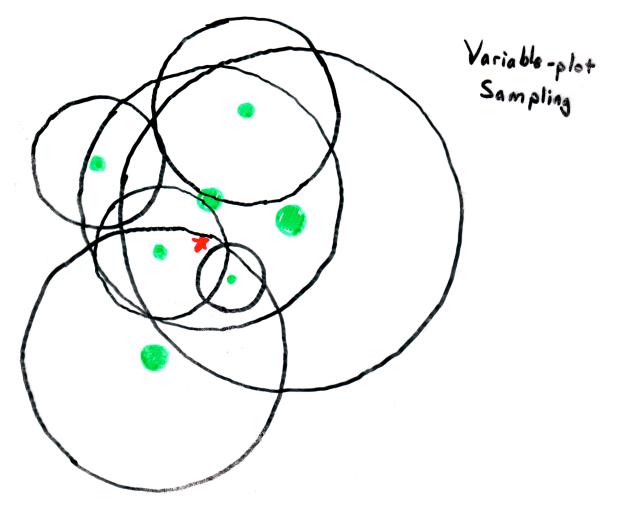
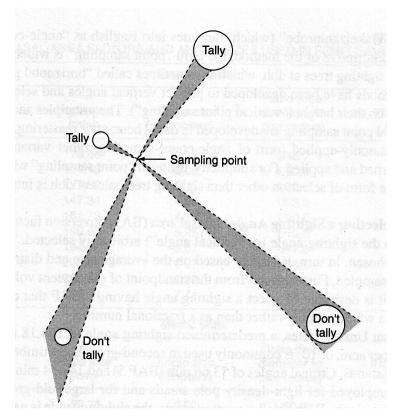
6.3 Assessing Stands w/ Variable-area Plots (or Points)


Use of variable-area plots as sample units (also known as variable-plot sampling, variable radius plot sampling, point sampling, plotless cruising, angle-count sampling, Bitterlich sampling, etc.) was developed by Prof. Dr. Walter Bitterlich in 1948

Lewis Grosenbaugh popularized the method in USA around 1952

Many features are similar to fixed-area plot sampling

- number and location of sample points is similar
- establish a plot center
- measure DBH and height the same way


Differs in that a plot radius is not "flagged" because each tree has its own plot size:

Fortunately, the circles are conceptual (or "virtual") in the sense that we do not have to measure a plot radius for every tree

To determine which trees are IN the "plot," stand at the sample point using an instrument that projects a fixed horizontal angle to "sight in" a diameter for every tree at a fixed height, usually taken to be breast height – trees thicker than the angle are "IN"

"IN" trees are also called TALLY trees

Unique features of variable-area plots

- Stand Basal Area estimates are found by multiplying the number of tallied trees by the so-called *Basal Area Factor*, or *BAF*, which is directly tied to the size angle that is projected no measurements needed !
- If any other estimates are desired, such as trees per acre, a stand table, or a stock table, etc., we have to measure DBH on the IN trees
- Tree Factor, TF is different for each individual tree and is given by

$$TF_i = \frac{BAF}{ba_i}$$

where *TFi* denotes the *Tree Factor* of *i-th* TALLY (IN) tree

BAF denotes the so-called Basal Area Factor in units of sq.ft./acre

 ba_i denotes basal area of *i*-th TALLY or IN tree (in sq.ft., of course)

- Plot Radius, R (in feet), for any tree is given by

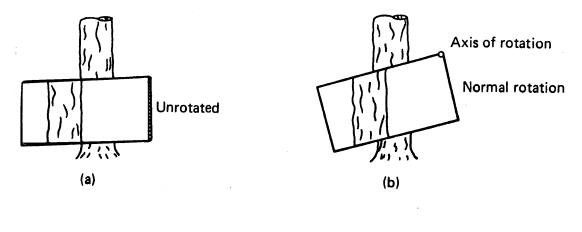
$$R_i = \left(\sqrt{\frac{75.625}{BAF}}\right) \cdot DBH_i$$

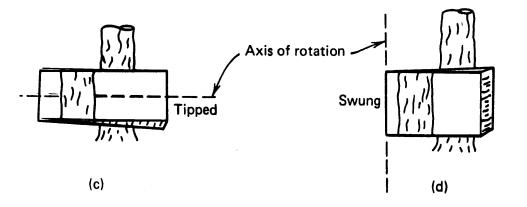
where 75.625 denotes a constant pertinent to American units

"R" also goes by "Horizontal Limiting Distance" (HLD)

Advantages of Variable-Area plots

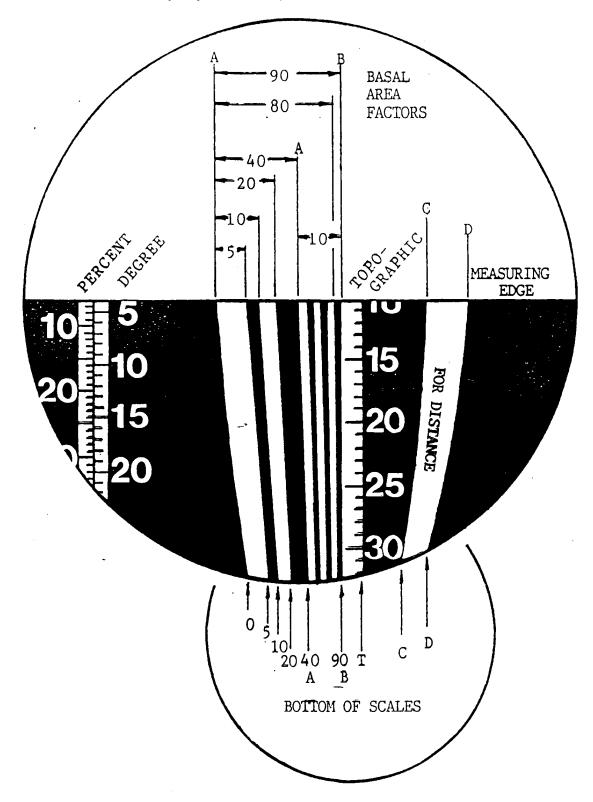
- Not necessary to establish fixed-plot boundaries, leading to greater measurement speed
- Large, often high value, trees that make up the bulk of the overstory are sampled in greater proportions than smaller stems
- Basal area and volume per acre may be derived without direct measurement of stem diameter


Disadvantages of Variable-Area plots


- Heavy underbrush reduces sighting visibility and measurement speed
- Small size of sampling unit (6 to 8 trees per point is most common) makes careful measurement & checking of borderline trees imperative big relative errors result otherwise
- Slope compensation is important or large errors will result (this is same for fixedarea plots as well)

Instrumentation for projecting horizontal angles

Wedge Prism


- hold <u>instrument</u> over sample point, sight on a tree, if image overlaps actual tree is "IN" or is a "TALLY" tree
- slope adjustments are conducted manually

Relaskop

- hold your eye over sample point
- automatically adjusts for slope

Tree Zone (Plot) area Illustration & Derivation

Keep in mind the following:

- horizontal angle is fixed
- every tree size (diameter) determines its zone (plot) radius, i.e., the critical angle subtends diameters of different sizes as distance is changed
- radius of each trees' zone is NOT affected by spatial location
- at the "borderline" the ratio of tree radius to zone radius is constant

Example Illustration

$$DBH = 6 \text{ in.} \quad r = 3 \text{ in.} \quad ba = \pi \left(\frac{r}{12}\right)^2 = 0.19634 \text{ ft}^2$$
$$R = 16.5 \text{ ft} \quad A = \pi R^2 = 855.2986 \text{ ft}^2$$
$$TF = \frac{\text{unit area}}{\text{sample area}} = \frac{43560 \text{ ft}^2 / \text{acre}}{855.2986 \text{ ft}^2} = 50.9296 / \text{acre}$$

 $BA/acre = TF \times ba = 50.9296/acre \times 0.19634 ft^2 = 10 ft^2/acre$

$$DBH = 12 \text{ in.} \quad r = 6 \text{ in.} \quad ba = \pi \left(\frac{r}{12}\right)^2 = 0.7854 \text{ ft}^2$$

$$R = 33 \text{ ft} \quad A = \pi R^2 = 3421.1944 \text{ ft}^2$$

$$TF = \frac{\text{unit area}}{\text{sample area}} = \frac{43560 \text{ ft}^2 / \text{acre}}{3421.1944 \text{ ft}^2} = 12.7324/\text{acre}$$

$$BA/acre = TF \times ba = 12.7324/\text{acre} \times 0.7854 \text{ ft}^2 = 10 \text{ ft}^2/\text{ acre}$$

Derivation

(In what follows, both r and R are expressed in feet – makes the math a bit easier!)

 $\frac{tree\ radius}{plot\ radius} = \frac{r}{R} = \sin\alpha \qquad \frac{tree\ basal\ area}{plot\ area} = \frac{\pi r^2}{\pi R^2} = \frac{r^2}{R^2} = \sin^2\alpha$

Now, the ratio of tree basal area to plot area is the same when projected to a unit area basis,

$$\sin^2 \alpha = \frac{tree \ basal \ area}{plot \ area} \times \frac{TF}{TF} = \frac{basal \ area / acre}{43560 \ ft^2 / acre}$$

$$\frac{basal \ area / acre}{43560 \ ft^2 / acre} = \sin^2 \alpha$$

$$basal \ area / acre = 43560 \ ft^2 / acre \left(\sin^2 \alpha\right)$$

$$BAF = 43560 \ ft^2 / acre \left(\sin^2 \alpha\right)$$

Now, let's say we wish to have each tree represent 10 sq. ft / acre

$$10 ft^{2} / acre = 43560 ft^{2} / acre(\sin^{2} \alpha)$$

$$\frac{10 ft^{2} / ac}{43560 ft^{2} / ac} = \sin^{2} \alpha$$

$$\sqrt{\frac{10 ft^{2} / ac}{43560 ft^{2} / ac}} = \sin \alpha$$

$$\sin^{-1} \left(\sqrt{\frac{10 ft^{2} / ac}{43560 ft^{2} / ac}} \right) = \alpha = 0.86815109^{\circ}$$

$$\phi = 2\alpha = 2 (0.86815109^{\circ}) = 1.736^{\circ}$$

Derivation of Horizontal Limiting Distance formula

$$BAF = 43560 ft^2 / ac \left(\sin^2 \alpha \right)$$
$$BAF = 43560 ft^2 / acre \left(\frac{r}{R} \right)^2$$

(Now back to the conventional units: r is in inches, R is in feet)

$$BAF = 43560 ft^{2} / ac \left(\frac{DBH / 2}{R} \cdot \frac{1 ft}{12 in}\right)^{2}$$
$$BAF = \frac{43560 ft^{2} / ac \cdot ft^{2}}{(12 \cdot 2)^{2}} \frac{DBH^{2}}{R^{2}}$$
$$R^{2} = \frac{43560 ft^{2}}{(12 \cdot 2)^{2} BAF} DBH^{2}$$
$$R = \sqrt{\frac{75.625 ft^{2}}{BAF}} DBH$$

ESRM 368 (E. Turnblom) – Variable-area Sample Units

Example Variable-Area plot Summary Calculations

2 Variable-area Point Summary A particular forest was surveyed using a 10factor angle-guage. An estimate of CV4 per acre with confidence interval and stand and stock tables are desired. Tarif # for the stand is 35.5; all DF. Point 2 Point 3 Point 1 <u>DBH</u> <u>CV4</u> <u>VBAR</u> 16 51.0 36.53 12 27.2 34.63 14 38.2 35.73 18 65.4 37.01 10 17.9 32.82 CV4 VBAR 176.72 ZVBAR Mean Tree Count (MTC) = $\frac{Z_1("N" trees})}{n0. points} = \frac{19}{3} = 6.333 \text{ trees/point}$ Avg. VBAR = $\frac{Z' VBAR}{n0. "In" trees} = \frac{176.72 + ...+246.07}{19} = 35.26 \frac{43}{72}/42^2$ Aug. Basal Area/acre = MTC(BAF) = 6.333(10)=63.3 ft2/ac Avg. Volume/acre = (Avg. VBAR)(Avg. BA/ac) $= (35.26 \text{ ft}^3/\text{ft}^2)(63.3 \text{ ft}^2/\text{ac})$ = 2233.1 ft3/ac to 4" top Stand Table Calculation Number of trees per acre in a D-class (TFA) is equal to the total BA in that class divided by ba of one such tree (bab), i.e., $TPA_{D} = MTC_{D}\left(\frac{BAF}{Da}\right)$. So, for example

2 Variable-area Point Summary (contid) 7 for the 18" class, there are three such trees on all three points \therefore MTC_D = $\frac{3}{3}$ = 1. The basal area of one 18" tree is 1.7671 fr2 Thus, TPA, = 1(10)(1,7671) = 5.7 -rees/ac Perform similar calculations for other classes DBH ITPA to get: 10 12 14 16 18 Stock Table calculations Volume per acre in a D-class is found from the stand table by multiplying MTGs by the average VBAR for that class (VEAR) and BAF VPA = (MTCD (BAF) (VBARD). So, for the 16" class there were 4 such trees on 3 points, :. $VPA_{1b} = \left(\frac{4}{3}\right)(10) - (36.53) = 4/87.1 \quad A^{3}/ac.$ Other classes treated similarly DBH VPA 10 12 14 14 16 187. 16 187. 187. 16 187. 187. 187. 187. 187. 187. 187. 187. 187. 187. 197.

Variable-area Point Sampling
Confidence Interval Construction
Let
$$Y = \Sigma VBAR$$
 per point. $n = 3$
 $\Sigma y = 669.87, \quad \overline{y} = 223.29$
 $\Sigma y^2 = .52828.93$
 $S_y^2 = .52828.93 - (669.87)^2/3} = .626.83$
 $S_y = VS_y^2 = .40.33$
Presuming very low sampling intensity, ignore f.p.c.
 $S_y = \frac{S_y}{Nn} = \frac{.40.33}{.53} = 23.28$
Assuming we desire a confidence coefficient of 80%
well need $t_{n20,2} = 1.8856$
 $80\% CI: 723.29 \pm 1.8856 (23.28)$
 $=>(179.38, 267.20) \Sigma VBAR per acte.$
VOLUME: BAF × ZVBAR
 $10(179.38, 267.20) =>(1793.8, 2672.0)$
Unless we were unlucky, true CV4 per
acter lives within these limits.