6.3 Assessing Stands w/ Variable-area Plots (or Points)

Use of variable-area plots as sample units (also known as variable-plot sampling, variable radius plot sampling, point sampling, plotless cruising, angle-count sampling, Bitterlich sampling, etc.) was developed by Prof. Dr. Walter Bitterlich in 1948
Lewis Grosenbaugh popularized the method in USA around 1952
Many features are similar to fixed-area plot sampling

- number and location of sample points is similar
- establish a plot center
- measure DBH and height the same way

Differs in that a plot radius is not "flagged" because each tree has its own plot size:

Fortunately, the circles are conceptual (or "virtual") in the sense that we do not have to measure a plot radius for every tree
To determine which trees are IN the "plot," stand at the sample point using an instrument that projects a fixed horizontal angle to "sight in" a diameter for every tree at a fixed height, usually taken to be breast height - trees thicker than the angle are "IN"
"IN" trees are also called TALLY trees

Unique features of variable-area plots

- Stand Basal Area estimates are found by multiplying the number of tallied trees by the so-called Basal Area Factor, or BAF, which is directly tied to the size angle that is projected - no measurements needed !
- If any other estimates are desired, such as trees per acre, a stand table, or a stock table, etc., we have to measure DBH on the IN trees
- Tree Factor, TF is different for each individual tree and is given by

$$
T F_{i}=\frac{B A F}{b a_{i}}
$$

where $\quad T F i$ denotes the Tree Factor of i-th TALLY (IN) tree
$B A F$ denotes the so-called Basal Area Factor in units of sq.ft./acre $b a_{i}$ denotes basal area of i-th TALLY or IN tree (in sq.ft., of course)

- Plot Radius, R (in feet), for any tree is given by

$$
R_{i}=\left(\sqrt{\frac{75.625}{B A F}}\right) \cdot D B H_{i}
$$

where $\quad 75.625$ denotes a constant pertinent to American units
" R " also goes by "Horizontal Limiting Distance" (HLD)

Advantages of Variable-Area plots

- Not necessary to establish fixed-plot boundaries, leading to greater measurement speed
- Large, often high value, trees that make up the bulk of the overstory are sampled in greater proportions than smaller stems
- Basal area and volume per acre may be derived without direct measurement of stem diameter

Disadvantages of Variable-Area plots

- Heavy underbrush reduces sighting visibility and measurement speed
- Small size of sampling unit (6 to 8 trees per point is most common) makes careful measurement $\&$ checking of borderline trees imperative - big relative errors result otherwise
- Slope compensation is important or large errors will result (this is same for fixedarea plots as well)

Instrumentation for projecting horizontal angles

Wedge Prism

- hold instrument over sample point, sight on a tree, if image overlaps actual tree is "IN" or is a "TALLY" tree
- slope adjustments are conducted manually

(a)

(b)

Relaskop

- hold your eye over sample point
- automatically adjusts for slope

Tree Zone (Plot) area Illustration \& Derivation
Keep in mind the following:

- horizontal angle is fixed
- every tree size (diameter) determines its zone (plot) radius, i.e., the critical angle subtends diameters of different sizes as distance is changed
- radius of each trees' zone is NOT affected by spatial location
- at the "borderline" the ratio of tree radius to zone radius is constant

Example Illustration
$D B H=6$ in. $\quad r=3$ in. $\quad b a=\pi\left(\frac{r}{12}\right)^{2}=0.19634 f t^{2}$

$$
R=16.5 \mathrm{ft} \quad A=\pi R^{2}=855.2986 \mathrm{ft}^{2}
$$

$T F=\frac{\text { unit area }}{\text { sample area }}=\frac{43560 \mathrm{ft}^{2} / \text { acre }}{855.2986 \mathrm{ft}^{2}}=50.9296 /$ acre
$B A /$ acre $=T F \times b a=50.9296 /$ acre $\times 0.19634 f t^{2}=10 f t^{2} /$ acre
$D B H=12$ in. $\quad r=6$ in. $\quad b a=\pi\left(\frac{r}{12}\right)^{2}=0.7854 f t^{2}$

$$
R=33 f t \quad A=\pi R^{2}=3421.1944 f t^{2}
$$

$T F=\frac{\text { unit area }}{\text { sample area }}=\frac{43560 \mathrm{ft}^{2} / \text { acre }}{3421.1944 \mathrm{ft}^{2}}=12.7324 /$ acre
$B A /$ acre $=T F \times b a=12.7324 /$ acre $\times 0.7854 \mathrm{ft}^{2}=10 \mathrm{ft}^{2} /$ acre

Derivation
(In what follows, both r and R are expressed in feet - makes the math a bit easier!) $\frac{\text { tree radius }}{\text { plot radius }}=\frac{r}{R}=\sin \alpha \quad \frac{\text { tree basal area }}{\text { plot area }}=\frac{\pi r^{2}}{\pi R^{2}}=\frac{r^{2}}{R^{2}}=\sin ^{2} \alpha$

Now, the ratio of tree basal area to plot area is the same when projected to a unit area basis,
$\sin ^{2} \alpha=\frac{\text { tree basal area }}{\text { plot area }} \times \frac{T F}{T F}=\frac{\text { basal area } / \text { acre }}{43560 f t^{2} / \text { acre }}$
$\frac{\text { basal area / acre }}{43560 f^{2} / \text { acre }}=\sin ^{2} \alpha$
basal area/acre $=43560 f t^{2} /$ acre $\left(\sin ^{2} \alpha\right)$
$B A F=43560 f^{2} /$ acre $\left(\sin ^{2} \alpha\right)$
Now, let's say we wish to have each tree represent 10 sq. ft / acre
$10 f^{2} /$ acre $=43560 f t^{2} / \operatorname{acre}\left(\sin ^{2} \alpha\right)$
$\frac{10 f t^{2} / a c}{43560 f t^{2} / a c}=\sin ^{2} \alpha$
$\sqrt{\frac{10 f t^{2} / a c}{43560 f t^{2} / a c}}=\sin \alpha$
$\sin ^{-1}\left(\sqrt{\frac{10 f t^{2} / a c}{43560 f t^{2} / a c}}\right)=\alpha=0.86815109^{\circ}$
$\phi=2 \alpha=2\left(0.86815109^{\circ}\right)=1.736^{\circ}$

Derivation of Horizontal Limiting Distance formula

$$
\begin{aligned}
& B A F=43560 f t^{2} / a c\left(\sin ^{2} \alpha\right) \\
& B A F=43560 f t^{2} / \operatorname{acre}\left(\frac{r}{R}\right)^{2}
\end{aligned}
$$

(Now back to the conventional units: r is in inches, R is in feet)

$$
\begin{aligned}
& B A F=43560 f t^{2} / a c\left(\frac{D B H / 2}{R} \cdot \frac{1 f t}{12 i n .}\right)^{2} \\
& B A F=\frac{43560 f t^{2} / a c \cdot f t^{2}}{(12 \cdot 2)^{2}} \frac{D B H^{2}}{R^{2}} \\
& R^{2}=\frac{43560 f t^{2}}{(12 \cdot 2)^{2} B A F} D B H^{2} \\
& R=\sqrt{\frac{75.625 f t^{2}}{B A F}} D B H
\end{aligned}
$$

Variable-area Point Summary

A particular forest was surveyed using a $10-$ factor angleguage. An estimate of CV4 per acre with confidence interval and stand and stock tables are desired.
Tarif \# for the stand is 35.5; all DF.
Point 1
Point 2
Point 3

Mean Tree Count (MTC) $=\frac{\sum \text { ('I N"trees) }}{\text { no. points }}=\frac{19}{3}=6.33 \overline{3}$ tres $/$ Pin
Avg. VBAR $=\frac{\sum \text { VAR }}{n 0 . " 1 n^{n} \text { trees }}=\frac{176.72+\cdots+246.07}{19}=35.26$ $\mathrm{Ft} / / \mathrm{tt}^{2}$
Avg. Basal Area/acre $=\operatorname{MTC}(B A F)=6.33 \overline{3}(10)=63 . \overline{3} \mathrm{fr}^{2} / \mathrm{ac}$
Avg. Volume/acre $=($ Avg. $V B A R)(A v g . B A / a c)$

$$
=\left(35.26 \mathrm{rt}^{3} / \mathrm{ft}^{2}\right)(63 . \overline{3} \mathrm{ft} / \mathrm{ac})
$$

- 2233.r As^{3} /ac to $4^{\prime \prime}$ top

Stand Table Calculation
Number of trees per acre in a D-class (TTAD) is equal to the total $B A$ in that class divided by ba of one such $\operatorname{tree}\left(b a_{D}\right)$, ie.,

$$
T P A_{D}=M T C_{D}\left(\frac{B A F}{b a_{D}}\right) . \quad \text { So, for example }
$$

Variable-area Point Summary (cont'd) $1 / 2$ for the 18 "class, there are three such trees on all three points $\therefore \quad M T C_{D}=\frac{3}{3}=1$.
The basal area of one $18^{\prime \prime}$ tree is $1.7671 \mathrm{fr}^{2}$
Thus, TPA $18=1(10)(1,7671)=5.7$ rees/ac Perform similar calculations for other classes to get:

DB	TPA
10	24.4
12	17.0
14	12.5
16	9.5
18	5.7
Total	69.1

Stock Table calculations
Volume per acre in a D-class is found from the stand table by multiplying MTC C_{D} by the average VBAR for that class ($V E A R$) and BAF $V P A_{D}=M T C_{D}(B A F)\left(V B A R_{D}\right)$. So, for the $16^{\prime \prime}$ class there were 4 such trees on 3 points, \therefore $V P A_{1 b}=\left(\frac{4}{3}\right)(10)-(36.53)=487.1 \mathrm{t}+3 / \mathrm{ac}$. Other classes treated similarly

$D B H$	$V P A$
10	462.4
12	467.4
14	48.4
18	472.8
Total	

Variable-area Point Sampling
Confidence Interval Construction
Let $Y=\sum V B A R$ per point. $n=3$

$$
\begin{aligned}
& \sum_{y}=669.87, \quad \bar{y}=223.29 \\
& \sum_{y} y^{2}=152828.93 \\
& S_{y}^{2}=\frac{152828.93-(669.87)^{2} / 3}{3-1}=1626.83 \\
& S_{y}=\sqrt{S_{y}^{2}}=40.33
\end{aligned}
$$

Presuming very low sampling intensity, ignore f.p.c.

$$
S_{\bar{y}}=\frac{S_{y}}{\sqrt{n}}=\frac{40.33}{\sqrt{3}}=23.28
$$

Assuming we desire a confidence coefficient of 80\% weill need $t_{1.20,2}=1.8856$

$$
\begin{aligned}
80 \% \text { CI: } & 223.29 \pm 1.8856(23.28) \\
\Rightarrow & (179.38,267.20) \quad \text { VVBAR per acre. }
\end{aligned}
$$

VOLUME: AF $\times \sum$ VAR

$$
10(179.38,267.20) \Rightarrow(1793.8,2672.0)
$$

Unless we were unlucky, true CV4 pen acre lies within these limits.

