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7.2 Stand Inventory using Ratio Estimation 
Ratio estimation (and the closely related regression estimation) makes use of an 

auxiliary variable that is measured on each sampling unit in addition to the variable 
of interest 

Sounds like extra work at first, because more measurements are needed, but if the 
auxiliary variable is highly correlated with the variable of interest, the extra effort will 
often result in extra precision on the variable of interest  

Consider the case where an estimate of the biomass of all red cedar in a particular 
forest area is needed, which is very expensive due to destructive sampling involved.  
Since it’s known that basal area is related to biomass, the basal area of all red 
cedar in that forest might be determined, providing support or additional help in 
estimating biomass.  Biomass is the dependent variable of interest and the basal 
area is the auxiliary variable. 

 
 
The population parameters associated with x and y are: 
 Tx =  population total of the auxiliary variable ( X in Husch, et al.) 
 µx =  population mean of the auxiliary variable ( x in Husch, et al.) 

 Ty =  population total of the variable of interest (  V̂  Husch, et al.) 

 µy =  population mean of the variable of interest (  V̂ N in Husch, et al.) 
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A new population parameter that may be of interest is the ratio defined by 

   R= µy
µx

= NµyNµx
= TyTx

 

 
The meaning of the ratio (its units) obviously depends on how y and x are defined 
Some examples 

o If Y is height and X is DBH, then R is the Height–Diameter ratio 
o If Y is crown length and X is height, then R is Live Crown Ratio 
o If Y is Volume and X is basal area, then R is VBAR 
o If Y is Volume today and X is volume 5 years ago, then R is proportionate 

increase (growth) in volume over the five year period 
 
Ratio estimators are used to obtain estimates of R,  µy,  Ty .  The estimators are, 

respectively,  

   R̂= yx =
1
n yii=1

n∑
1
n xii=1

n∑
=

yii=1
n∑
xii=1

n∑
  ( r  in Husch, et al.) 

  yR = R̂µx       

   T̂Y = R̂Tx      (eq. 13-18 in Husch, et al.) 

where n is number of sampling units on which both y and x are measured, and all else 
is defined as before. ( R̂  is often called the “ratio-of-means” estimate.) 

Note that population mean and/or total of X is required – many situations exist that if X 
is defined wisely, the mean or total of Y will be much more precise compared to 
non-ratio type estimators 

 
Re-expressing the estimating equation for yR  may provide some insight into its logic: 

   yR =   R̂µx =   yxµx =   yµxx  

In this form, we see that if x = µx , they cancel each other and we are left with the 
usual SRS or SYS estimator of µy , which is the sample mean of y  

If the sample mean of x is smaller than the population mean of x, then the sample 
taken gave an underestimate of µx .  When X and Y are highly correlated, the 
implication is that y  is probably underestimating µy  also.  So, y  is adjusted 
upward proportinally to reflect the degree of underestimation 

If  x  comes out larger than  µx , then the opposite occurs 
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Of course, we still need to know how reliable our estimate is, so we need to compute 
variances and standard errors to construct CI’s.  

First, calculate:  

Su2 =
yi
2 + R̂2 xi

2 −2R̂ xiyi
i=1

n
∑

i=1

n
∑

i=1

n
∑

n−1  

 This quantity represents how much variability there is in the LINEAR 
relationship between Y and X.  When X and Y are highly correlated in linear 
fashion, then this quantity will be small (sum of cross-products will be large!) 

Then, variance will be:  

  [1] For a ratio:  S
R̂
2 = 1

µx2
Su2
n

N −n
N
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 [2] For a mean: SyR
2 = Su
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 [3] For a total:  S
T̂R
2 =Tx2 1µx2
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⎞

⎠
⎟  (eq. 13-19 in Husch, et al.) 

where, N represents the total number of sampling units in the population.   

(Setting   µx
2Su

2 = S2  in the previous formulas makes them equivalent to those in 
Husch, et al.) 

The relationship between Y and X must be linear for this to work, but does not 
necessarily have to go through the origin, as long as sample size is large 
(say, n > 30) 

 

Example.  (Estimating a total using Ratio Estimation)  
A forester is marking a stand of trees for a variable intensity thinning.  The 
forester wants an estimate of volume for all the marked trees.  Every tree that is 
marked is measured for DBH.  On a sample of the marked trees, measurements 
are taken to enable estimation of total board-foot volume.  A total of 500 trees 
are marked and measured for DBH and a sample of 35 marked trees are 
measured more intensively for volume.   
For this problem, the variable of interest, Y, is board-foot volume and the 
auxiliary variable, X, is basal area.  (Why basal area, not DBH?)  Note also that 
the population of interest is all marked trees, therefore, the true mean of X, 
basal area per tree is known and was found to be  

  µx =1.525 ft2  
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The following information is also available from the data: 

 xi
i=1

35
∑ = 57.248    yi

i=1

35
∑ = 7063  

 x2i
i=1

35
∑ =107.373   y2i

i=1

35
∑ =1,781,123  xiyi

i=1

35
∑ =13,722.673  

Thus,  R̂ =
yi

i=1

n

∑
xi

i=1

n

∑
= 7063
57.248 =123.375  

And, the total is estimated as 
  

 
T̂Y = R̂Tx = R̂ Nµx( ) =123.375 500i1.525( ) = 94,073 bd. ft  

  
For a reliability estimate, calculate  

  

Su2 =
yi

2 + R̂2 xi
2 − 2R̂ xiyi

i=1

n

∑
i=1

n

∑
i=1

n

∑
n−1

     =
1,781,123+ 123.375( )2 107.373( )− 2 123.375( ) 13,722.673( )

34
   =   865.289

 

Which leads to variance and standard error of the total,  

  

 

S
T̂Y

2 =Tx2
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   = 57747991.214

  (var. eq’n [3]) 

  S
T̂Y

= S
T̂Y
2 = 2397.500  

 
Let’s say we desired a 90% CI which is found by using t0.10(2),34 =1.691  so that 

 T̂Y ± t0.10(2),34ST̂Y
  ⇒    94,073±1.6911 2397.5( )  

which, when calculated out becomes 
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 90%CI 90,019;  98,127( )   bd. ft   in trees marked for thinning.   

 
Sample Size Formulas in Ratio Estimation 
When coupled with SRS or SYS, determining the number of samples required to meet 

a desired allowable error is straightforward.  
 
Estimating a population Ratio, R itself: 

  n= t2Su2N
ER2µx2N + t2Su2

 

where, ER = is the half-width of the desired Confidence Interval on ratio, R  
If Ratio estimation is being used because population size is unknown, but large 
enough so that the f.p.c. (finite population correction) can be ignored, then 

  n= t2Su2
ER2µx2

 

Regardless of whether N is known or not, Su2  and µx  must be estimated from 
previous experience or from a pilot survey.   

 
Estimating the population mean, µy , use: 

For finite population:  n= t2Su2N
EM2N + t2Su2

 

For infinite population:  n= t
2Su2
EM2

 

where EM denotes the half-width of the desired CI on the population mean 

Estimating a population total, Ty , use: 

 For finite population:  n= t2Su2N 2

ET2 + t2NSu2
 

 For infinite population:  n= t
2Su2N 2

ET2
 

 where WT denotes the desired Confidence Interval half-width for the total, TY  
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Example. 
Let’s say we wanted to estimate the total board-foot volume in the variable intensity 
thinning to within 2,500 bd.ft at 90% confidence.  What sample size is needed?   
 
Since this is about an estimate of the total for a finite population, we use the first 
formula in the last set given above.  For the stand we have the following: 

  Su2 =   865.289  

  N = 500  
  ET = 2500  

Guessing first that n is really, really big (infinite) we use a z-value of 1.6449 

  n =
1.64492 865.289( )5002

2500( )2 +1.64492 865.289( )500
= 78.8 ≈ 79  

Rather than interpolate from the table, rounded up a bit and used 80 d.f.; t = 1.6641 

  n =
1.66412 865.289( )5002

2500( )2 +1.66412 865.289( )500
= 80.4 ≈ 81 

STOP, because, d.f. = 80 corresponds to n = 81.   


