Keep your report to no more than 2 pages of text. Show all your calculations (separate pages are ok to show calculations)
Title/student name, intro (when/where/what/why), objectives, then:

1. Briefly discuss 4 examples of how specific soils information (such as a specific soil property (e.g. texture, horizon etc.) could be used to tell you about the primary productivity or use of a site.
2. What are 2 examples of microclimate information that could be useful when considering land management choices? Explain 'why' for each.
3. Soil samples have been collected in your sites in St Edward St Pk and analyzed for BD and total N concentrations. Those results along with your field trip data are presented in the Friday lecture of the Soil's Module. Using these data, calculate the TOTAL amount of \mathbf{N} (in $\mathrm{kg} \mathrm{ha}^{-1}$) present in each soil profile at the two sites you visited in the field. (Be sure to sum the N from ALL horizons at each site.) SHOW your calculations and tell us what this total \mathbf{N} value says about your two sites (hint: compare N w average N presented in Wed lecture).
4. Each of the 4 sites that we visited at St. Edward St. Park had soils that may or may not have matched what was mapped for that area. Briefly summarize your conclusions for all 4 sites as to what was found in the field relative to the soil map and comment on the value of the soils map to management activities.

Field Trip Sites:
Tuesday: \quad Upland $=$ Site C
Lowland = Site D

Wednesday: Upland = Site A
 Lowland = Site B

For Soils: think about productivity, appropriate uses, inappropriate uses, sensitive areas, soils map information

Microclimate: any effects with land use changes

Bulk Density Calculations

Bulk Density = dry soil mass / volume
Dry Mass:
O horizon (organic detritus) dried at $70-75 \mathrm{C}$
Mineral soil dried at 105C
Volume:
Mineral Soil: e.g.,
core volume of 2 rings $=137.4 \mathrm{~cm}^{3}\left(\pi \mathrm{r}^{2} \mathrm{~h}=\mathrm{vol}\right)$
Organic horizons: e.g.,
Volume = average depth of 4 measurements $\times 18 \mathrm{~cm} \times 11.5 \mathrm{~cm}$ (area of cut-out template)

Bulk Density = dry weight / field volume

Site Characteristics					
Site Parameter	Site A Upland	Site B Lowland	Site C Upland	Site D Lowland	
Forest Type	Conifer	Decid	Conifer	Decid	
Max temp, C	17.9	17.8	18.8	17.6	
Min temp, C	6.4	6.4	5.7	5.3	
Aspect, ${ }^{\circ}$	10	310	269	4	
Slope, \%	18	50	12	15	
Grdwater depth, cm	none	none	none	48	
Throughfall, mm	21.9	21.8	11.8	22.4	

Soil Horizons, depths and bulk densities

Soil Horizons, depths and bulk densities							
Site A horizons Moderate Hillslope (higher)	Depth (cm) and BD $\mathrm{g} / \mathrm{cm}^{3}$	Site B horizons Steep Hillslope Ilower	Depth (cm) and BD $\mathrm{g} / \mathrm{cm}^{3}$	Site C horizons UPLAND	Depth (cm) and BD $\mathrm{g} / \mathrm{cm}^{3}$	Site D horizons Lowland	Depth (cm) and BD $\mathrm{g} / \mathrm{cm}^{3}$
0	$\begin{aligned} & 5.7-0 \mathrm{~cm} \\ & .04 \mathrm{~g} / \mathrm{cm}^{3} \end{aligned}$	0	$\begin{aligned} & 2-0 \mathrm{~cm} \\ & .05 \mathrm{~g} / \mathrm{cm}^{3} \end{aligned}$	0	$4.1-0 \mathrm{~cm}$ $.04 \mathrm{~g} / \mathrm{cm}^{3}$	0	$\begin{aligned} & 2-0 \mathrm{~cm} \\ & .02 \mathrm{~g} / \mathrm{cm}^{3} \end{aligned}$
A	$\begin{aligned} & \hline 0-8 \\ & 1.1 \end{aligned}$	A	$\begin{aligned} & 0-9 \\ & 1.0 \end{aligned}$	A	$\begin{aligned} & 0-7 \\ & 1.0 \end{aligned}$	A	$\begin{aligned} & \hline 0-15 \\ & 1.0 \end{aligned}$
Bw	$\begin{aligned} & 8-36 \\ & 0.9 \end{aligned}$	Bw	$\begin{aligned} & \hline 9-30 \\ & 1.2 \end{aligned}$	Bw1	$\begin{aligned} & \hline 7-18 \\ & 1.2 \end{aligned}$	Cg1	$\begin{array}{\|l\|l\|} \hline 15-27 \\ 1.3 \end{array}$
BC	$\begin{aligned} & \hline 36-60 \\ & 1.1 \end{aligned}$	$\begin{gathered} \mathrm{BC} \text { or } \\ \mathrm{Bg} \end{gathered}$	$\begin{array}{\|l\|} \hline 30-57 \\ 1.3 \end{array}$	Bw2	$\begin{aligned} & 18-24 \\ & 1.2 \end{aligned}$	Cg2	$\begin{aligned} & \hline 27-40+ \\ & 1.3 \end{aligned}$
C	$\begin{array}{\|l\|l\|} \hline 60-90+ \\ 1.2 \\ \hline \end{array}$	$\begin{gathered} \mathrm{C} \text { or } \\ \mathrm{Ca} \end{gathered}$	$\begin{array}{\|l\|} \hline 57-70+ \\ 1.3 \\ \hline \end{array}$	BC	$\begin{array}{\|l\|} \hline 24-73 \\ 1.3 \\ \hline \end{array}$		
				C	$\begin{aligned} & \hline 73-90+ \\ & 1.3 \end{aligned}$		
loamy sands, glacial outwash		$\begin{aligned} & \frac{\text { silty clay loams, }}{\text { slity clays }} \\ & \text { lacustrine } \end{aligned}$		sandy loams, glacial outwash/till		sandy loams \& sandy clay loams, alluvial 17	

Chemical Analyses:

Total \mathbf{N} in Soil

Site A Moderate Hillslope	mg N /g soil	Site B Steep Hillslope llower	mg N /g soil	Site C UPLAND	$\begin{aligned} & \hline \mathrm{mg} \mathrm{~N} \\ & \text { /g soil } \end{aligned}$	Site D LOWLAND	mg N /g soil
0	15.0	0	19.0	0	17.1	0	24.0
A	4.1	A	5.0	A	6.7	A	6.8
Bw	1.2	Bw	3.8	Bw1	1.8	Cg1	0.9
BC	1.0	$\begin{aligned} & \mathrm{BC} \text { or } \\ & \mathrm{Bg} \end{aligned}$	1.3	Bw2	1.1	Cg2	0.5
C	0.9	C or Cg	1.2	BC	1.0		
				C	0.01		18

Chemical analysis:
Total N using a CHN analyzer
and
dissolved ammonium and nitrate in solution using an
Autoanalyzer

Throughfall Data:

Chemical Analyses:

Collectors installed Oct 3 Total of 1 weeks

Solution Ammonium and Nitrate

$$
\begin{array}{ll}
\text { PPT: } & \mathrm{NH}_{4}=.013 \mathrm{mg} \mathrm{~L}^{-1} \\
& \mathrm{NO}_{3}=.040 \mathrm{mg} \mathrm{~L}^{-1}
\end{array}
$$

Sample	$\mathrm{mg} \mathrm{NH}_{4}{ }^{+} / \mathbf{L}$	$\mathrm{mg} \mathrm{NO}_{3}{ }^{-} / \mathbf{L}$	Sample	$\mathbf{m g ~ N H}_{4}{ }^{+} / \mathbf{L}$	$\mathrm{mg} \mathrm{NO}_{3}-/ \mathbf{L}$
Site A throughfall	0.11	0.5	Site C throughfall	0.18	0.7
Site B throughfall	0.39	0.6	Site D throughfall	0.5	0.9
Site B groundwater			Site D groundwater	0.41	0.70
			Site D Streamwater	0.72	0.80

MONROE, WASHINGTON (455525)

Period of Record Monthly Climate Summary
Period of Record : 6/ 1/1948 to 12/31/2006

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Average Max. Temperature	45.1	50.0	53.9	59.9	66.1	71.2	76.5	76.6	71.1	60.9	50.8	45.2	60.6
(F)													
Average Min. Temperature (F)	32.9	34.3	36.4	39.9	45.0	49.7	52.2	52.6	48.6	43.0	37.3	34.1	42.2
Average Total Precipitation (in.)	6.46	4.64	4.73	3.61	3.06	2.45	1.39	1.65	2.66	4.48	6.73	6.70	48.50
Average Total SnowFall (in.)	3.3	0.0	0.7	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.6	2.4	8.1
Average Snow Depth (in.)	0	0	0	0	0	0	0	0	0	0	0	0	0

Percent of possible observations for period of record.
Max. Temp.: 97.6\% Min. Temp.: 97.5\% Precipitation: 97.7\% Snowfall: 97.4\% Snow Depth: 96.1\%
Check Station Metadata or Metadata graphics for more detail about data completeness.

Western Regional Climate Center, http://www.wrcc.dri.edu/summary/climsmwa.html

Keep your report to no more than 2 pages of text. Show all your calculations (separate pages are ok to show calculations)
Title/student name, intro (when/where/what/why), objectives, then:

1. Briefly discuss 4 examples of how specific soils information (such as a specific soil property (e.g. texture, horizon etc.) could be used to tell you about the productivity or use of a site.
2. What are 2 examples of microclimate information that could be useful when considering land management choices? Explain 'why' for each.
3. Soil samples have been collected in your sites in St Edward St Pk and analyzed for BD and total N concentrations. Those results along with your field trip data are presented in the Friday lecture of the Soil's Module. Using these data, calculate the TOTAL amount of \mathbf{N} (in $\mathrm{kg} \mathrm{ha}^{-1}$) present in each soil profile at the two sites you visited in the field. (Be sure to sum the N from ALL horizons at each site.) SHOW your calculations and tell us what this total \mathbf{N} value says about your two sites (hint: compare N w average N presented in Wed lecture).
4. Each of the 4 sites that we visited at St. Edward St. Park had soils that may or may not have matched what was mapped for that area. Briefly summarize your conclusions for all 4 sites as to what was found in the field relative to the soil map and comment on the value of the soils map to management activities.
