STAND ASSESSMENT: Applications \& CFI

ESRM 304

Site Index \& Basal Area - An application

Bankfull width less than or equal to $\mathbf{1 0}$ feet

	E		Core Zone Width	Inner Zone Width				Outer Zone Width
SITE CLASS I 200' WIDE RMZ	Nì		50'					67'
SITE CLASS II 170' WIDE RMZ			50'		63'		57'	
SITE CLASS III 140' WIDE RMZ			50'		$3 '$	47'		
SITE CLASS IV 110' WIDE RMZ			50'	23'				
SITE CLASS V 90' WIDE RMZ			50'		30'			
			o Harvest	-				

Mean DBH \& QMD - An Application

Mean DBH: $\quad \overline{D B H}=\frac{1}{n} \sum_{i=1}^{n} D B H_{i}$
Quad. Mean DBH: $\quad Q M D=D_{g}=\sqrt{\frac{\bar{g}}{0.005454}}$
Dispersion of DBHs: $\quad s_{D B H}^{2}=\left(\frac{n}{n-1}\right)\left(Q M D^{2}-\overline{D B H}^{2}\right)$
Coefficient of Variation: $\quad C V_{D B H}=\frac{S_{D B H}}{\overline{D B H}}$

One view of Stand Structure

2006 Stand Table (plot 70303)

- Diameter
(size) distributions

AGE \& TPA - An Application

> Structure / Constitution is determined by:

- Size variability
\checkmark Diameter
\checkmark Height
\checkmark Crown
- Frequency of occurrence; shape, location of size distribution
- Age; shape, location of age distribution
- Spatial arrangement of trees in stand

Forest Structure / Constitution

> Five Typical Stand Constitutions (age structures)

- Single-cohort (even-aged) stand
- Single-cohort stratified mixture
- Two-aged stand
- Balanced uneven-aged stand
- Irregular uneven-aged stand
> Represent different life histories \& management (stewardship) options / potentials

Five Typical Stand Constitutions

- Single cohort (even-aged) stand

Five Typical Stand Constitutions

- Single cohort stratified mixture

Five Typical Stand Constitutions

- Multi-cohort (uneven-aged) stands

- Double Cohort (Two-Aged) Stand

(Smith, et al. 1996)

Continuous Forest Inventory

- PURPOSE: Get a complete historical record on forest change - The ONLY way to is to monitor permanently monumented plots
* Data from Permanent Sample Plots (PSP's) is for:
- Studying how biodiversity, wildlife habitat quality, etc.
... change over time
- Forecasting stand dynamics, i.e., developing and testing forest-change simulation models
- Studying the effects of cultural practices, insect attacks, weather, climate, etc.
*. Chief purpose is to assess change so forest stewards are alerted to potential need for changing practices or policies

Continuous Forest Inventory Attributes

* CFI is generally very low intensity

。 Sampling intensities often range from 0.1% to 1%

- TSP's will typically be used to supplement PSP's
* CFI plots must be representative of the forest; no special "reserve status"
*. Systematic sampling is often used
- Stratified sampling is often messed up by natural disaster, natural changes in species composition
*. Sample size determination is difficult
- Must be applicable now AND in the future
- Large enough to be precise for several forest attributes

Continuous Forest Inventory Installation

* Plot locations can be placed onto a photomosaic, orthophoto, topographic, or other map of the ownership, then transferred to 9×9 " photos to take into the field
* Distance \& bearing to plot center is determined from the photo or map from a known permanent location (primary control) to avoid bias
* Plot center is marked with aluminum stake, re-bar, or PVC pipe
* Tags on trees in plot are stapled, nailed and / or trees are painted near breast height

Continuous Forest Inventory Execution

a. Measurement interval is typically 3 to 10 years

* Five percent of all plots (randomly selected) are normally "check-cruised" for accuracy
* Repeat measurement cycle is either annual or periodic
- In a periodic survey, with periodic measurement interval p, EVERY plot is measured every p years
- In an "annual" survey, $1 / \mathrm{p}$ plots will be measured EVERY year

Four major stages of stand development

	$5^{5} 5^{3}$				
Grass-forb	Seedling-shrub	Sapling-pole	Intermediate	Mature	Old growth
Stand initiation		Stem exclusion		Understory reinitiation	Old growth

Summary Remarks

> Measurement data collected from trees in a forest system yields information

- Forest Structure / Function
- Five major age constitutions
- Four major stages of stand development
> Repeated measurement (monitoring) of forest systems is key to assessing real change
> Sound data enables sound stand, forest, and landscape management decisions

Example Exam Questions

Upper canopy vegetation
Q. You are 100 feet away from a tree on flat ground to measure its height. The clinometer reading to the top is 98% and to the base it is -4%. How tall is the tree?

A: $H=100 \times[98-(-4)] / 100=102$ feet tall

Example Exam Questions (cont'd)

- Define Site Index

A: Average height of undamaged, dominant trees of a particular species at a particular index age.

In Washington, index age used in site index charts is typically 50 years west of Cascades, 100 years east of Cascades.

