Individual Tree Measurement: Key to Forest Assessment

Learning Objectives ...

Know what basic tree & upper canopy (forest stand) attributes are important

Know how to measure basic tree attributes

Know how to record data on basic tree attributes

Why Sample Forest Vegetation?

> Need information on forest vegetation for making sound decisions

- What is the recreation potential?
- What silvicultural treatment will result in best critical habitat enhancement?
- What silvicultural treatment will result in best growth & regeneration of the trees?
- What species is / are most suitable for reforestation?
- What is the value of the timber and the land?
- Is there sufficient value in timber to offset cost of silvicultural treatments?
- What is the status of biodiversity on the area?
- How is the forest currently storing carbon?

Why Sample Forest Vegetation?

 Ultimate objective is to obtain quantifiable information about the resource that allows reasonable decisions on its destiny, management, and use

Need to see the forest through the trees !

- Individual tree measurement forms the basis for all forest assessment / inventory
- Much information and many relationships can be derived from individual trees & their attributes
 - Quantity
 - Species
 - Age
 - Diameter
 - Height
- Direct measurement, sampling, prediction are all involved

Stand Attributes

• Trees Per unit-Area (TPA)

- Average number of live trees existing on a characteristic unit of area. The most basic measure of stand density. (In U.S.A., units are Trees Per Acre.)
- Species Composition simple
 - Proportion of each species present in a stand – by Frequency of occurrence

Individual Tree Measurement

• Diameter

- Most frequently measured diameter is Diameter Breast Height (DBH, or just D, for short)
- DBH is average stem diameter (in inches!) outside bark of a tree measured at breast height above ground level
 - In U.S., breast height is taken to be 4.5 ft.
 - On steep slopes measure on the uphill side of tree
 - Leaning trees require measurement along the bole
 - Trees forking below breast height are treated as two
 - Trees forking above breast height avoid swells
 - Other stem deformities move above it
- Most commonly used measurement device is the D-tape

Tree Measurement: basal area

- Basal Area (ba)
 - ba (or g) is directly related to crown surface area
 - Cross sectional area of the tree at breast height assuming stem circularity – always in square feet! (in U.S.)

$$a = \pi r^{2}$$

$$a = \pi \left(\frac{d}{2}\right)^{2}$$

$$a = \pi \left(\frac{D}{2 \cdot 12}\right)^{2} = 0.005454154D^{2}$$

$$\alpha = 0.005454154DRH$$

Stand Attributes ...

- Stand Basal Area (SBA, BA, or G)
 - sum of individual tree basal areas in a stand.
- Species Composition (more sophisticated)
 - Proportion of each species present in a stand by Basal Area stocking

Stand Attribute: Avg. DBH

- Average stand DBH is a useful statistic for silviculture, stewardship, management
 - Mean DBH (DBH) The simple arithmetic mean DBH of all trees in the stand
 - Quadratic Mean DBH (DBHq, QMD, or sometimes Dg) – the DBH of the tree with mean basal area

$$QMD = D_g = \sqrt{\frac{\bar{g}}{0.005454}}$$

Tree Measurement: Age

• Tree Age (in yr.)

- Trees in temperate zones grow one distinctive layer of wood per year so age is found by counting these annual rings
 - Care is needed to avoid counting 'false' rings
- Tree Age:
 - Total Age: Elapsed time since germination of a seed or time since budding of a sprout or cutting
 - Breast-height age: Elapsed time since tree height exceeded breast height
 - Instrument: Increment Borer

Stand Attribute: Age

Stand Age

- Total Age
- Breast Height Age
- Plantation age: Elapsed time since planting regardless of seedling age
- Even-aged vs. Uneven-aged
 - Even-aged: tree ages vary < 20% of "rotation"
 - Uneven-aged: tree ages vary more, or there are 3 or more distinct 'cohorts'

Tree Measurement: Height

- Tree Height (ft., in U.S., m. elsewhere)
 - Total height (H) distance from tree base to tip (volume, biomass, site quality)
 - Height-to-crown (HCB) distance from tree base to base of live crown (enables derivation of LCR)
 - Merchantable height (Hm) Height to a minimum top diameter, m
 - Instruments are called "hypsometers"
 - Direct measurement: Height poles
 - Indirect measurement
 - Similar triangles
 - Trigonometric principles (clinometer)

В

DT/OD = tan(TOD), therefore, DT = OD x tan(TOD)DB/OD = -tan(DOB), therefore, DB = -OD x tan(DOB),

В

```
Tree Height = OD x tan(TOD) + [-OD x tan(DOB)], or,
Tree Height = OD x [tan(TOD) - tan(DOB)].
```

Horizontal distance OD is measured with a tape. Clino measures tangents of angles TOD, DOB in percent (100 x tan), so

```
Tree Height = OD x [TOD% / 100 - DOB\% / 100], or
Tree Height = OD x [TOD% - DOB%] / 100
```


OD/OD' = cos(DOD')

 $OD = OD' \times cos(DOD')$

Measure angle DOD' with clinometer in degrees & plug into height equation:

Tree Height = $[OD' \times cos(DOD')] \times [TOD\% - DOB\%] / 100$

Tree Crown Classes

- D = Dominant: Crowns extend above general level of canopy; receives light from above and substantially from sides,
- **C = Codominant:** Crowns form general level of canopy; receives light from above, but comparatively little from sides,
- I = Intermediate: Shorter than two preceding with crowns extending well into general level of canopy; receiving some light from above
- **O = Overtopped:** Crowns entirely below general level of canopy; receives no direct sunlight

Stand Attributes ...

- Height (H, AveHt)
 - Arithmetic mean height of all trees in a stand
- Dominant Height
 - Definitions vary
 - Average height of just dominant trees (crowns extend above general level of canopy)
 - Average height of dominants and co-dominants (trees whose crowns form the general level of the canopy)
 - Predominant Height average height of 100 tallest trees per hectare (40 per acre)
 - Top Height average height of 100 largest diameter trees per hectare (40 per acre)

Stand Attribute: Site Quality

- Dominant Height related to age Site Index
 - Trees are resource integrators
 - Site Index: The average height of undamaged dominant trees at a reference age
 - Dominant tree height insensitive to crowding
 - Reference age (or base age, or index age) chosen appropriately
 - Species dependent
 - Sometimes dominant trees are unavailable; can be challenging esp. in mixed stands
 - Requires trees on the site

Site Index

James King (1966)published site index curves for Douglas-fir in the Pacific **Northwest**

Site Index & Basal Area - An application

Bankfull width less than or equal to 10 feet

	rream	Zone	Core Zone Width	Inner Zone Width				Outer Zone Width	
SITE CLASS I 200' WIDE RMZ	River/St	igration	50′	83′			67′		
SITE CLASS II 170' WIDE RMZ		annel M	50'	63′				57'	
SITE CLASS III 140' WIDE RMZ		/idth/Ch	50'	43′			47′		
SITE CLASS IV 110' WIDE RMZ		ankfull V	50'	23′ 37		7'		_	
SITE CLASS V 90' WIDE RMZ		ä	50'	3	80'				
			No Harvest	10 ′					

Permanent Sample Plot Layout

Large Tree measurement plot

- 0.1 acre plot \rightarrow 37.2 foot radius
- white PVC pipe at plot center $\frac{1}{2}$; plot number written on it w/ indelible ink
- all trees within the plot have aluminum tags
- first tree on plot marked with pink flagging

Small Tree measurement plot

- 0.025 acre plot → 18.6 foot radius
- same plot center as large plot
- · trees are not tagged
- · perimeter is not marked

Field Tally Sheet

Plot and Tree Enumeration Card

Plot and Tree Enumeration Card								Page of			
Date				Team				Forest			
Compartment			_ Stand				Plot				
Aspect		_	Slope			Elevation					
Tree	Spp	DBH	Ht.	Dist	S (°)	B. (%)	T.(%)	C. (%)	Add-on	Comment(s)	

Upper Canopy Surveys

- Field Trip to St. Edward State Park
- Tu & We 28 & 29 Month 2017
- Depart from behind Bloedel Hall (C-10 parking lot) promptly at 12:30 P.M.
- Dress appropriately: long pants, sturdy closed-toe footwear (preferably with ankle support), rain gear, etc.

