Statistical Methods in Natural Resources Management

ESRM 304

Statistical Methods in Natural Resources Management

I. Estimating a Population Mean
II. Comparing two Population Means
III. Reading Assignment

I. Estimating a Population Mean

A. Simple Random Sampling (SRS)

B. Mean, variance, standard dev., std. error
C. Estimating Reliability with Confidence

I. Estimating a Population Mean

A. Simple Random Sampling (SRS)

1) The real 'workhorse' of statistical methods
> All other methods have their 'roots' in SRS
2) Every possible combination of n units is equally probable
> How to do this?
3) Units may be selected w/ or w/o replacement

I. Estimating a Population Mean

A. Simple Random Sampling - Example

A 250-acre forest was sampled for cordwood volume per acre in trees larger than 5" DBH
. Sample units were chosen to be $1 / 4$-acre, circular plots
> Sample size was chosen to be $n=25$

7

Sampling without replacement will be used			
10	7	4	7
8	8	7	5
6	9	7	8
7	11	8	8
3	8	7	7
	Total $=$	175	

I. Estimating a Population Mean

B. Mean, variance, standard dev., std. error $\checkmark \quad$ Cordwood volume on the $i^{\text {th }}$ plot will be named y_{i}

$$
\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=\frac{1}{25}(7+8+2+\cdots+7)=\frac{175}{25}=7 \text { cds per } 1 / 4-\text { acre plot }
$$

Naturally, there are four $1 / 4-\mathrm{ac}$ plots per acre, so There are 28 cds per acre on average in the forest.

Total volume in the forest ...

$$
\begin{aligned}
& \hat{Y}=(\text { cds } / \text { acre })(\text { no. of acres })=28(250)=7,000 c d s \\
& \hat{Y}=N y=1,000(7)=7,000 c d s
\end{aligned}
$$

I. Estimating a Population Mean

B. Mean, variance, standard dev., std. error

$$
\begin{aligned}
s_{y}^{2} & =\frac{\sum_{i=1}^{n} y_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{2} y_{i}\right)^{2}}{(n-1)} \\
& =\frac{\left(7^{2}+8^{2}+\cdots+7^{2}\right)-\frac{1}{25}(175)^{2}}{(25-1)} \\
& =\frac{1,317-1,225}{24}=3.8333(\mathrm{cds} / \text { qtr.acre })^{2}
\end{aligned}
$$

I. Estimating a Population Mean

B. Mean, variance, standard dev., std. error

$$
s_{y}=\sqrt{s_{y}^{2}}=\sqrt{3.8333}=1.9579 \mathrm{cds}
$$

Standard Error has two variants ...
For sampling with replacement:

$$
s_{\bar{y}}=\frac{s_{y}}{\sqrt{n}}=\frac{1.9579}{\sqrt{25}}=0.3916 \mathrm{cds}
$$

For sampling without replacement:

$$
s_{\bar{y}}=\frac{s_{y}}{\sqrt{n}} \sqrt{\left(1-\frac{n}{N}\right)}=\frac{1.9579}{\sqrt{25}} \sqrt{\left(1-\frac{25}{1,000}\right)}=0.3916(0.975)=0.3867 c d s
$$

I. Estimating a Population Mean

C. Estimating Reliability with Confidence
$>$ By itself, the mean does not tell us everything we need to know
$>$ What remains is knowing how reliable the sample mean is for estimating the population mean

- Standard Error comes to our assistance here
$>\quad$ We use a 'Confidence Interval' to tell us the probability of being within a certain range of the population mean
> Accuracy and Precision interact at this stage

I. Estimating a Population Mean

C. Estimating Reliability with Confidence

> For large samples, we can appeal to the Normal dist' n

- A 95% CI for the population mean is given by

Estimate ± 2 (Standard Error of the Estimate)
$>$ For small samples we rely on "Student's t " dist' n

- A CI for the population mean is given by Estimate $\pm t$ (Standard Error of the Estimate)
- The value of t we choose depends on how confident we wish to be that we have "covered" the population mean within our range of estimated values (interval)

Table 2.-Distribution of t

Statistical Methods in Nat. Resources

I. Estimating a Population Mean

C. Estimating Reliability with Confidence
$>$ For an estimate made from 25 units (24 df), a 95\% confidence interval is given by

$$
\begin{aligned}
\bar{y} \pm t \cdot s_{\bar{y}} & =7 \pm 2.064(0.3867) \\
& =6.20 \text { to } 7.80 \text { cds per } 1 / 4-a c
\end{aligned}
$$

Expanding that to an acre ...

$$
\begin{aligned}
& {[4] 7 \pm 2.064([4] 0.3867)} \\
& =24.80 \text { to } 31.20 \text { cds per acre }
\end{aligned}
$$

II. Comparing Two Population Means

A. Estimating two means, two variances B. Estimating variance and standard error of the difference between the two means
C. Two methods to test the difference

II. Comparing Two Population Means

A. Estimating two means, two variances

Example -
We are interested if our lowland hardwood forest produced the same volume ($\mathrm{ft}^{3} /$ acre) as our upland hardwood forest over a given time period
We sample ten, randomly chosen, one-acre plots in each forest type

II. Comparing Two Population Means

A. Estimating two means, two variances The data ($\mathrm{y}_{1}=$ lowland; $\mathrm{y}_{2}=$ upland):

Lowland Hardwoods	
520	760
710	890
770	810
840	580
630	860
Total $=$	7,370

Upland Hardwoods	
420	180
210	260
290	320
350	270
540	200
Total $=$	3,040

$$
\bar{y}_{1}=\frac{1}{10}(7,370)=737 \mathrm{ft}^{3} / \text { acre } \quad \bar{y}_{2}=304 \mathrm{ft}^{3} / \text { acre }
$$

II. Comparing Two Population Means

A. Estimating two means, two variances

$$
\begin{aligned}
& s_{1}^{2}=\frac{\left(520^{2}+710^{2}+\cdots+860^{2}\right)-\frac{1}{10}(7,370)^{2}}{(10-1)}=15,556.6667 \\
& s_{2}^{2}=\frac{\left(420^{2}+210^{2}+\cdots+200^{2}\right)-\frac{1}{10}(3,040)^{2}}{(10-1)}=12,204.4444
\end{aligned}
$$

II. Comparing Two Population Means

B. Estimating variance and standard error of the difference between the two means
First, estimate a common (pooled) variance...

$$
\begin{aligned}
s_{p}^{2} & =\frac{s_{1}^{2}\left(n_{1}-1\right)+s_{2}^{2}\left(n_{2}-1\right)}{\left(n_{1}-1\right)+\left(n_{2}-1\right)} \\
& =\frac{15,556.6667(10-1)+12,204.4444(10-1)}{(10-1)+(10-1)} \\
& =13,880.5556\left(\text { ft }^{3} \text { per acre }\right)^{2}
\end{aligned}
$$

II. Comparing Two Population Means

B. Estimating variance and standard error of the difference between the two means
... then, the standard error of the difference...

$$
\begin{aligned}
s_{\bar{y}_{1}-\bar{y}_{2}} & =\sqrt{\frac{s_{p}^{2}\left(n_{1}+n_{2}\right)}{\left(n_{1}\right)\left(n_{2}\right)}}=\sqrt{\frac{13,880.5556(10+10)}{(10)(10)}} \\
& =52.6888 \mathrm{ft}^{3} \text { per acre }
\end{aligned}
$$

II. Comparing Two Population Means

C. Two methods to test the difference

First, the Confidence Interval method...
Estimate $\pm t$ (Standard Error of the Estimate)
For a 95% CI ... (recall we have $18 d f$)

$$
\begin{aligned}
\bar{y}_{1} & -\bar{y}_{2} \pm t \cdot s_{\bar{y}_{1}-\bar{y}_{2}} \\
& =737-304 \pm 2.101(52.6888) \\
& =322.3 \text { to } 543.7 \mathrm{ft}^{3} \text { per ac. }
\end{aligned}
$$

Table 2.-Distribution of t

df	Probability								
	. 5	. 4	3	. 2	. 1	. 05	. 02	. 01	. 001
	1.000	1.376	1.963	3.078	6.314	12.706	\$1.821	63.657	536.619
	. 816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.598
	765	. 978	1.250	1.638	2.353	3.182	4.541	5.841	12.941
	. 741	. 941	1.190	1.533	2.132	2.776	3.747	4.604	8.610
	. 727	. 920	1.156	1.476	2.015	2.571	3.365	4.032	6.859
	718	906	1.134	1.440	1.943	2.447	3.143	3.707	5.959
	.711	. 896	1.119	1.415	1.895	2.365	2.998	3.499	5.405
	. 706	. 889	1.108	1.397	1.860	2.306	2.896	3.355	5.041
9	. 703	. 883	1.100	1.383	1.833	2.262	2.821	3.250	4.781
10	700	. 879	1.093	1.372	1.812	2.228	2.764	3.169	4.587
11.	. 697	876	1.088	1.363	1.796	2.201	2.718	3.106	4.437
12	. 695	. 873	1.083	1.356	1.782	2.179	2.681	3.055	4.318
13	. 694	. 870	1.079	1.350	1.771	2.160	2.650	3.012	4.221
14	. 692	. 868	1.076	1.345	1.761	2.145	2.624	2.977	4.140
15	. 691	. 866	1.074	1.341	1.753	2.131	2.602	2.947	4.073
16	. 690	. 865	1.071	1.337	1.746	2.120	2.583	2.921	4.015
	. 689	. 863	1.069	1.333	1.740	2.110	2.567	2.898	3.965
	. 688	. 862	1.067	1.330	1.734	2.101	2.552	2.878	3.922
19	. 688	. 861	1.066	1.328	1.729	2.093	2.539	2.861	3.883
20	. 687	. 860	1.064	1.325	1.725	2.086	2.528	2.845	3.850
	. 686	. 859	1.063	1.323	1.721	2.080	2.518	2.831	3.819
22	. 686	. 858	1.061	1.321	1.717	2.074	2.508	2.819	3.792
	. 685	. 858	1.060	1.319	1.714	2.069	2.500	2.807	3.767
	. 685	. 857	1.059	1.318	1.711	2.064	2.492	2.797	3.745
	. 684	. 856	1.058	1.316	1.708	2.060	2.485	2.787	3.725
26	. 684	856	1.058	1.315	1.706	2.056	2.479	2.779	3.707

[^0]
II. Comparing Two Population Means

C. Two methods to test the difference Second, the t test (Hypothesis Testing) method...

- The hypothesis we actually test states "there is no difference between the means" (the "null")
- To run the test, we choose a probability of incorrectly rejecting the notion of "no difference" ... let' s say 5%

$$
t_{o b s}=\frac{\bar{y}_{1}-\bar{y}_{2}}{s_{\bar{y}_{1}-\bar{y}_{2}}}=\frac{737-304}{52.6888}=8.218
$$

Is this "more extreme" than a $5 \% t$ with $18 d f ? \ldots$ YES!

III. Reading Assignment

A. "Elementary Statistical Methods for Foresters," by Freese, p. 1-13; 24-27
B. "READ This! Study Tips," by Rose

[^0]: Statistical Methods in Nat. Resources

