Statistical Methods in Natural Resources Management

ESRM 304

Statistical Methods in Natural Resources Management

- I. Estimating a Population Mean
- II. Comparing two Population Means
- III. Reading Assignment

- A. Simple Random Sampling (SRS)
- B. Mean, variance, standard dev., std. error
- C. Estimating Reliability with Confidence

- A. Simple Random Sampling (SRS)
 - 1) The real 'workhorse' of statistical methods
 - All other methods have their 'roots' in SRS
 - 2) Every possible combination of *n* units is equally probable
 - ➤ How to do this?
 - 3) Units may be selected w/ or w/o replacement

A. Simple Random Sampling - Example

- A 250-acre forest was sampled for cordwood volume per acre in trees larger than 5" DBH
- > Sample units were chosen to be 1/4-acre, circular plots
- > Sample size was chosen to be n = 25

8

2

6

Sampling without replacement will be used

10	7	4	7
8	8	7	5
6	9	7	8
7	11	8	8
3	8	7	7
		Total =	175

B. <u>Mean</u>, variance, standard dev., std. error

Cordwood volume on the i^{th} plot will be named y_i

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{25} (7 + 8 + 2 + \dots + 7) = \frac{175}{25} = 7 \ cds \ per \ 1/4 - acre \ plot$$

Naturally, there are four 1/4-ac plots per acre, so There are 28 cds per acre on average in the forest.

Total volume in the forest ...

$$\hat{Y} = (cds/acre)(no. of acres) = 28(250) = 7,000 cds$$

 $\hat{Y} = N\overline{y} = 1,000(7) = 7,000 cds$

B. Mean, variance, standard dev., std. error

$$s_{y}^{2} = \frac{\sum_{i=1}^{n} y_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{2} y_{i}\right)^{2}}{(n-1)}$$

= $\frac{\left(7^{2} + 8^{2} + \dots + 7^{2}\right) - \frac{1}{25} (175)^{2}}{(25-1)}$
= $\frac{1,317 - 1,225}{24} = 3.8333 \left(cds / qtr.acre\right)^{2}$

B. Mean, variance, <u>standard dev.</u>, <u>std. error</u> $s_y = \sqrt{s_y^2} = \sqrt{3.8333} = 1.9579 \ cds$

Standard Error has two variants ...

For sampling with replacement:

$$s_{\overline{y}} = \frac{s_y}{\sqrt{n}} = \frac{1.9579}{\sqrt{25}} = 0.3916 \ cds$$

For sampling without replacement:

$$s_{\bar{y}} = \frac{s_{\bar{y}}}{\sqrt{n}} \sqrt{\left(1 - \frac{n}{N}\right)} = \frac{1.9579}{\sqrt{25}} \sqrt{\left(1 - \frac{25}{1,000}\right)} = 0.3916(0.975) = 0.3867 \ cds$$

C. Estimating Reliability with Confidence

- By itself, the mean does not tell us everything we need to know
- What remains is knowing how reliable the sample mean is for estimating the population mean
 - Standard Error comes to our assistance here
- We use a 'Confidence Interval' to tell us the probability of being within a certain range of the population mean
- Accuracy and Precision interact at this stage

C. Estimating Reliability with Confidence

- ➢ For large samples, we can appeal to the Normal dist' n
 - A 95% CI for the population mean is given by Estimate ± 2 (Standard Error of the Estimate)
- > For small samples we rely on "Student' s t" dist' n
 - A CI for the population mean is given by Estimate $\pm t$ (Standard Error of the Estimate)
 - The value of *t* we choose depends on how confident we wish to be that we have "covered" the population mean within our range of estimated values (interval)

Table 2.-Distribution of t

C.

df	Probability									
	.5	.4	.3	.2	.1	.05	.02	.01	.001	n
1	1.000	1.376	1.963	3.078	6.314	12.706	\$1.821	63.657	536.619	_
2	.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.598	
3	.765	.978	1.250	1.638	2.353	3.182	4.541	5.841	12.941	
4	.741	.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610	
5	.727	.920	1.156	1.476	2.015	2.571	3.365	4.032	6.859	
6	.718	.906	1.134	1.440	1.943	2.447	3.143	3.707	5.959	
7	.711	.896	1.119	1.415	1.895	2.365	2.998	3.499	5.405	
8	.706	.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041	
9	.703	.883	1.100	1.383	1.833	2.262	2.821	3.250	4.781	
10	.700	.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587	
11	.697	.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437	
12	.695	.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318	
13	.694	.870	1.079	1.350	1.771	2.160	2.650	3.012	4.221	
14	.692	.868	1.076	1.345	1.761	2.145	2.624	2.977	4.140	
15	.691	.866	1.074	1.341	1.753	2.131	2.602	2.947	4.073	
16	.690	.865	1.071	1.337	1.746	2.120	2.583	2.921	4.015	
17	.689	.863	1.069	1.333	1.740	2.110	2.567	2.898	3.965	
18	.688	.862	1.067	1.330	1.734	2.101	2.552	2.878	3.922	
19	.688	.861	1.066	1.328	1.729	2.093	2.539	2.861	3.883	
20	.688	.860	1.064	1.325	1.725	2.086	2.528	2.845	3.850	
21 22 23 24 25	.686 .686 .685 .685 .684	.859 .858 .858 .857 .857 .856	1.063 1.061 1.060 1.059 1.058	1.323 1.321 1.319 1.318 1.316	1.721 1.717 1.714 1.711 1.708	2.080 2.074 2.069 2.064 2.060	2.518 2.508 2.500 2.492 2.485	2.831 2.819 2.807 2.797 2.787	3.819 3.792 3.767 3.745 3.725	
26	.684	.856	1.058	1.315	1.706		2.479	2.779	3.707	11

- C. Estimating Reliability with Confidence
 - For an estimate made from 25 units (24 df), a 95% confidence interval is given by

$$\overline{y} \pm t \cdot s_{\overline{y}} = 7 \pm 2.064(0.3867)$$

= 6.20 to 7.80 cds per 1/4 - ac

Expanding that to an acre ...

$$[4]7 \pm 2.064([4]0.3867)$$

= 24.80 to 31.20 cds per acre

- A. Estimating two means, two variances
- B. Estimating variance and standard error of the *difference* between the two means
- C. Two methods to test the difference

- A. Estimating two means, two variances Example -
 - We are interested if our lowland hardwood forest produced the same volume (ft³/acre) as our upland hardwood forest over a given time period We sample ten, randomly chosen, one-acre plots in each forest type

A. Estimating <u>two means</u>, two variances

The data $(y_1 = \text{lowland}; y_2 = \text{upland})$:

Lowland Ha	rdwoods	Upland Hardwoods			
520	760	420	180		
710	890	210	260		
770	810	290	320		
840	580	350	270		
630	860	540	200		
Total =	7,370	Total =	3,040		

$$\overline{y}_1 = \frac{1}{10} (7,370) = 737 \, ft^3 / acre$$
 $\overline{y}_2 = 304 \, ft^3 / acre$

Statistical Methods in Nat. Resources

A. Estimating two means, <u>two variances</u> $s_{1}^{2} = \frac{\left(520^{2} + 710^{2} + \dots + 860^{2}\right) - \frac{1}{10}\left(7,370\right)^{2}}{\left(10 - 1\right)} = 15,556.6667$ $s_{2}^{2} = \frac{\left(420^{2} + 210^{2} + \dots + 200^{2}\right) - \frac{1}{10}\left(3,040\right)^{2}}{\left(10 - 1\right)} = 12,204.4444$

B. Estimating <u>variance</u> and standard error of the *difference* between the two means

First, estimate a common (pooled) variance...

$$s_{p}^{2} = \frac{s_{1}^{2}(n_{1}-1) + s_{2}^{2}(n_{2}-1)}{(n_{1}-1) + (n_{2}-1)}$$

=
$$\frac{15,556.6667(10-1) + 12,204.4444(10-1)}{(10-1) + (10-1)}$$

=
$$13,880.5556 (ft^{3} per acre)^{2}$$

B. Estimating variance and <u>standard error</u> of the *difference* between the two means

... then, the standard error of the difference...

$$s_{\overline{y}_1 - \overline{y}_2} = \sqrt{\frac{s_p^2(n_1 + n_2)}{(n_1)(n_2)}} = \sqrt{\frac{13,880.5556(10 + 10)}{(10)(10)}}$$

= 52.6888 ft³ per acre

C. Two methods to test the difference <u>First</u>, the Confidence Interval method... Estimate $\pm t$ (Standard Error of the Estimate) For a 95% CI ... (recall we have 18 *df*)

$$\overline{y}_{1} - \overline{y}_{2} \pm t \cdot s_{\overline{y}_{1} - \overline{y}_{2}}$$

$$= 737 - 304 \pm 2.101(52.6888)$$

$$= 322.3 \text{ to } 543.7 \text{ ft}^{3} \text{ per ac.}$$

Table 2.-Distribution of t

C

	df Probability								on		
		.5	.4	.3	.2	.1	.05	.02	.01	.001	
	1 2 3 4 5 6 7 8 9 10	1.000 .816 .765 .741 .727 .718 .711 .706 .703 .700	1.376 1.061 .978 .941 .920 .906 .896 .889 .883 .879	1.963 1.386 1.250 1.190 1.156 1.134 1.119 1.108 1.100 1.093	3.078 1.886 1.638 1.533 1.476 1.476 1.440 1.415 1.397 1.383 1.372	6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812	12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228	\$1.821 6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.821 2.764	63.657 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250 3.169	536.619 31.598 12.941 8.610 6.859 5.959 5.405 5.041 4.781 4.587	
	11 12 13 14 15	.697 .695 .694 .692 .691	.876 .873 .870 .868 .866	1.088 1.083 1.079 1.076 1.074	1.363 1.356 1.350 1.345 1.341	1.796 1.782 1.771 1.761 1.753	2.201 2.179 2.160 2.145 2.131	2.718 2.681 2.650 2.624 2.602	3.106 3.055 3.012 2.977 2.947	4.437 4.318 4.221 4.140 4.073	
	16 17 18 19 20	.690 .689 .688 .688 .688	.865 .863 .862 .861 .860	1.071 1.069 1.067 1.066 1.064	1.337 1.333 1.330 1.328 1.325	1.746 1.740 1.734 1.729 1.725	2.120 2.110 2.101 2.093 2.086	2.583 2.567 2.552 2.539 2.528	2.921 2.898 2.878 2.861 2.845	4.015 3.965 3.922 3.883 3.850	
	21 22 23 24 25	.686 .686 .685 .685 .684	.859 .858 .858 .857 .857 .856	1.063 1.061 1.060 1.059 1.058	1.323 1.321 1.319 1.318 1.316	1.721 1.717 1.714 1.711 1.708	2.080 2.074 2.069 2.064 2.060	2.518 2.508 2.500 2.492 2.485	2.831 2.819 2.807 2.797 2.787	3.819 3.792 3.767 3.745 3.725	
26684.8561.0581.3151.7062.0562.4792.7793.707Statistical Methods in Nat. Resources											

20

- C. Two methods to test the difference <u>Second</u>, the *t* test (Hypothesis Testing) method...
 - The hypothesis we actually test states "there is no difference between the means" (the "null")
 - To run the test, we choose a probability of incorrectly rejecting the notion of "no difference" ... let's say 5%

$$t_{obs} = \frac{\overline{y}_1 - \overline{y}_2}{s_{\overline{y}_1 - \overline{y}_2}} = \frac{737 - 304}{52.6888} = 8.218$$

Is this "more extreme" than a 5% t with 18 df? ... YES!

III. Reading Assignment

A. "Elementary Statistical Methods for Foresters," by Freese, p. 1-13; 24-27

B. "READ This! Study Tips," by Rose