Lower Canopy Assessment & Designing Multi-resource Surveys

ESRM 304

Learning Objectives ...

- Appreciate how lower canopy vegetation fits into a multipurpose resource inventory and the complex nature of planning an assessment to include all environmental components
- Know the steps involved with inventory planning
- Know what is involved with statistically sampling a well-defined population

Vegetation & LOD Surveys

Part of multi-resource inventory

- Need information on the entire ecosystem
- Need to gain information on
 - Forest structure
 - Hydrology
 - Soils, microclimate
 - Wildlife
 - Human dimensions
 - Variability in conditions
 - System processes

Vegetation & LOD Surveys

- Info on structure, variability, processes ...
 - Builds inventory on critical habitat conditions
 - Enables I.D. of wildlife habitat relationships
 - Aids grouping of stands into productivity classes
 - Enhances grouping of stands into risk classes
 - Allows development of management targets for
 - Biological diversity maintenance
 - Managing potential fire hazard
 - Silvicultural manipulations

Vegetation & LOD Surveys

- Surveys are best stratified for efficiency
 - Coarse woody litter (Large Organic Detritus)
 - Use transects (line intersect) sometimes fixed-area
 - Groundstory component
 - Use fixed-area sometimes transects (point transect)
 - Understory component
 - Use transects (point transect) sometimes fixed-area
 - Overstory component
 - Use fixed-area plots sometimes variable-area

Vegetation & LOD Example Survey

- Forest Inventory & Analysis (FIA)
 - In continuous operation since 1930
 - o Mission
 - Imake and keep current a comprehensive inventory and analysis of the present and prospective conditions of and requirements for the renewable resources of the forest and rangelands of the US."
 - Collects, analyzes, and reports information on the status and trends of America's forests: how much forest exists, where it exists, who owns it, and how it is changing

Integrated Monitoring Framework

Integrated FIA – Sample Units

Phase 2/Phase 3 Plot Design

🔘 Subplot	24.0 ft (7.32 m) radius				
 Microplot 	6.8 ft (2.07 m) radius				
💭 Annular plot	58.9 ft (17.95 m) radius				
🔵 Lichens plot	120.0 ft (36.60 m) radius				
Vegetation plot	1.0 m² area				
— Soil Sampling	(point sample)				
— Down Woody Debris	24.0 ft (7.32 m) transects				

Vegetation & LOD Example Survey

- Forest Inventory & Analysis (FIA)
 - Information collected on
 - ✓ Soil quality
 - Down woody debris
 - Vegetation structure and diversity
 - Crown condition
 - Tree mortality
 - ✓ Tree growth
 - Lichen communities
 - Vegetation health

Multiresource inventories

Relative priority, either Low (L), Medium (M), or High (H), for assessing each resource depends on the inventory objectives:

Survey Objective	Area Est.	Owner Patterns	Access- ibility	Vol. Est.	Growth & Drain	Critical Habitat	Scenic Views	Other Uses
Appraisal	Н	L	Н	Н	L	L	L	L
Recreation	М	Н	Н	L	L	Н	Н	М
Mgt. Plan	Н	М	М	Н	Н	М	М	М

Appraisal: assessment of sale value of standing timber – sometimes called "stumpage" – depends on species, size (volume), quality of timber, accessibility, and distance to primary markets

A comprehensive plan ensures all facets of the inventory are considered

- data to be collected
- financial support needed
- logistical support required
- compilation procedures

Be sure to consider the following

- 1. Purpose of the inventory
- 2. Background information
- 3. Description of Area
- 4. Information required in final report

- 5. Sample survey design
- Define target population
- Define sample unit
- Define required accuracy and precision
 - Will need to construct confidence interval
 - estimate ± "t-multiplier" x standard error of estimate

$$\overline{y} \pm t \cdot s_{\overline{y}}$$

- Decide how samples will be collected
- Decide how many sample units will be measured
- Know budgeting limitations for field work

- 6. Photo, satellite, other remotely sensed info. interpretation procedures
- 7. Fieldwork procedures
- 8. Compilation and calculation procedures
- 9. Final report
- 10. Maintenance

Define target population

- All red squirrels in a certain watershed area
- All invasive vegetative species
- All conifers in a certain project area with minimum DBH of 5.6"
- Specify units of measure:
 - "...bd.ft. volume of all conifers ...",
 - "... total biomass (kg) of invasive vegetation ..."

• Define sample unit

- Fixed-area plots: 1/5, 1/10, 1/20, 1/40-acre sizes common for overstory trees; 1/200-acre, or less for seedling regeneration
- Variable area plots (variable probability sampling)
- Transects: lower canopy vegetation, downed woody detritus
- Individuals: a deer, a tree, a log, a hiker on a trail
- Groups: herd of deer, group of hikers, truckload of logs
- Sampling window: fixed length of time to observe

- Define required accuracy and precision
 - Depends on survey objectives (and convention)
 - Management plan / multiresource surveys
 - Designed to provide info on all environmental comp's
 - Generally low intensity info collected to make broadlybased management decisions for long range planning
 - Estimate the population mean with 10 –20% accuracy using 70 –90% confidence

- Define required accuracy ... (cont'd)
 - Timber sale / Land acquisition surveys
 - Designed to provide info on net volume or value of merchantable trees growing in "operable" areas
 - Land acquisition requires additional info on site quality, soil characteristics, proximity to markets, info on other environmental services
 - Estimate population mean with 2 –5 % accuracy using 90 – 99% C.I.

- Define required accuracy ... (cont'd)
 - Special surveys
 - Varies with application
 - Regeneration survey
 - Timber trespass survey
 - Insect / disease infestations
 - Availability of browse, mast, etc. for wildlife
 - Etc.

- Decide how sample units will be selected
 - Simple Random Sampling (SRS)
 - Systematic sampling
 - Double sampling (sampling for a ratio or regression)
 - Stratified random sampling
 - Two-stage, Multistage sampling
 - Cluster sampling

- Decide how many sample units will be measured
 - Know what equations will be used to compute estimates
 - Use of statistical formulas preferred

- Know budgeting limitations for fieldwork
 - Simple cost model for SRS:
 - $C_t = C_o + n C_1$, where
 - C_t = Total cost of survey
 - C_o = Overhead cost, e.g. planning, organization, etc.
 - $C_1 = Cost per sampling unit$
 - n = number of sampling units to be measured
 - Number of sample units is then limited by:

•
$$n = (C_t - C_o) / C_1$$

Summary Remarks

- Multiresource surveys include many important biotic and abiotic attributes
- Best to use stratified sampling schemes
 - Increases efficiency
 - Small plots for small things
 - More plots for more variable pop' ns
- Examples
 - Forest Inventory & Analysis (FIA)
 - Pack Forest Resource Inventory (PFRI)
 - Continuous Forest Inventory (CFI)

Summary Remarks

- Sound data enables sound stand, forest, and landscape management decisions
- Multiresource Inventories should include consideration of
 - data to be collected
 - financial support needed
 - logistical support required
 - compilation procedures

Summary Remarks

- There are 10 steps to address during inventory planning
- ✓ Statistical sampling (step 5) involves
 - Defining the target population
 - Choosing the sample unit
 - Defining required accuracy & precision
 - Deciding how samples will be selected
 - Choosing a sample size
 - Knowing budgeting and logistical constraints
- Supplemental Reading
 - Chpt. 12 (excerpts), Husch, et al.

