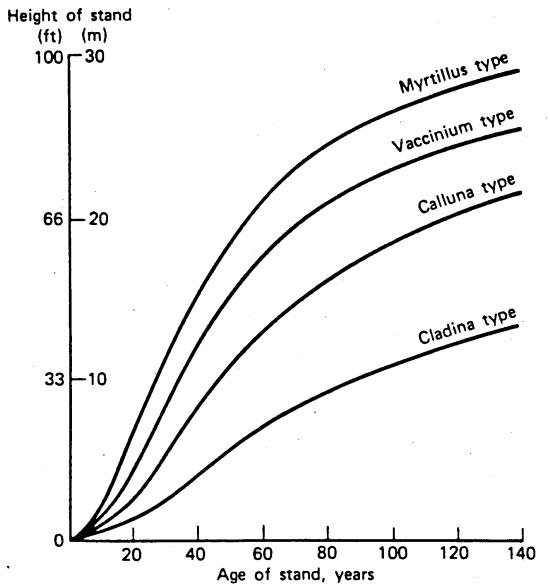


Learning Objectives

- ➤ Know why we measure lower canopy vegetation & Large Organic Detritus (LOD)
- Know what basic lower canopy & groundstory attributes are important and how to measure them
- Introduce field methods for labs this week

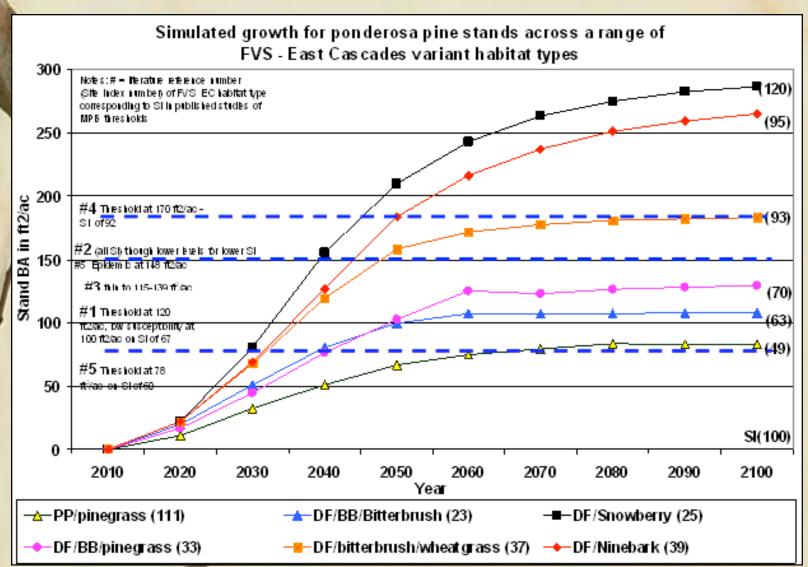
Lower Canopy Information: Importance

- > Site Quality
- > Forest Structural Patterns
- > Wildlife-Habitat relationships
- Biological Diversity
- Biomass of secondary forest products

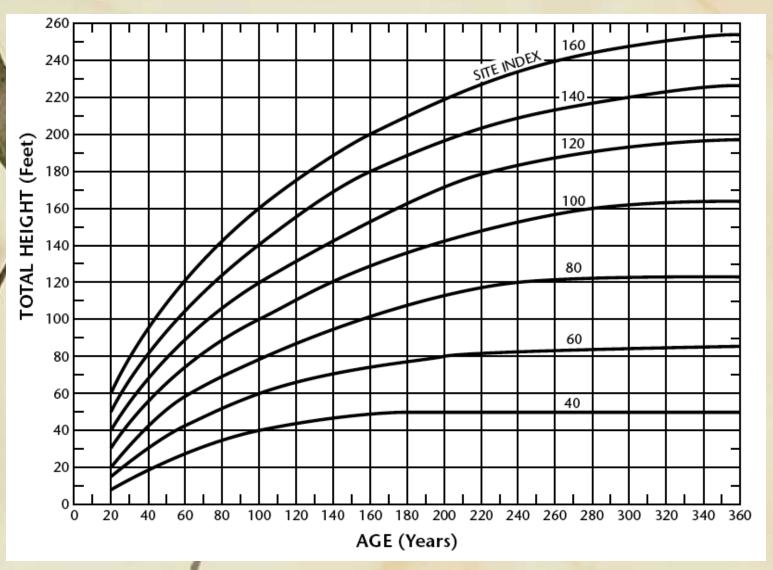


- > Productive capacity of forest land
- Useful for ...
 - o Determining what species are suitable
 - o Predicting growth potential
 - o Evaluating ecosystem resiliency
 - o Determining management priorities
 - o Land valuation

Potential for forest growth can be identified by using assemblages of lower canopy vegetation


Scots pine growing in Finland ...

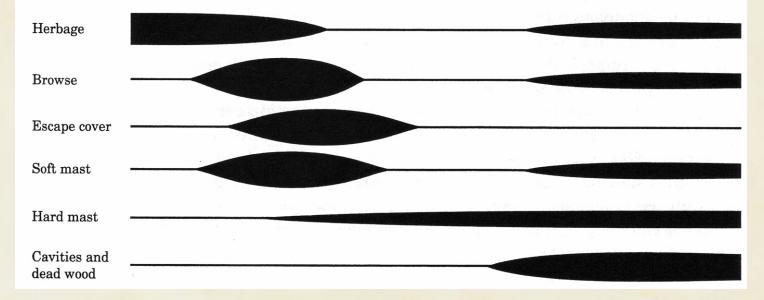
Assessing Site Quality



Assessing Site Quality

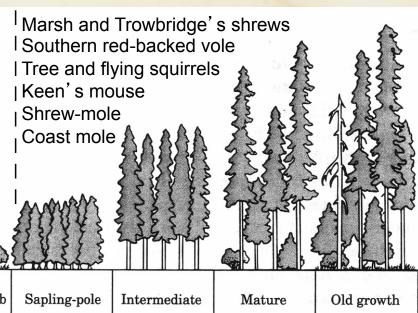
Closer to home ...

Assessing Site Quality

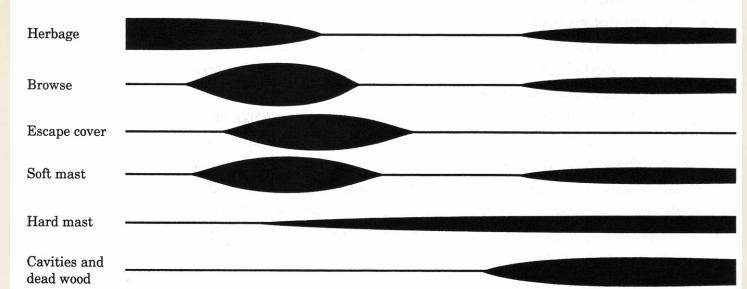


Examining Structural Patterns

- Northwest ecosystems contain many different vegetation patterns
- Types, amounts, and distribution of vegetation patterns define water quantity and quality, wildlife habitat, timber resources
- Vegetation patterns impact forest processes such as stream flow, erosion, and succession
- forest landscapes are created and maintained through a balance of disturbance and recovery processes.



Kill and white war No	A LOO		SHOOPOR			A RICHARD
Grass-forl)	Seedling-shrub	Sapling-pole	Intermediate	Mature	Old growth
Stand initiation			Stem e	xclusion	Understory reinitiation	Old growth



Vagrant shrew
Townsend's mole
Meadow voles
Jumping mice
Deer mouse
Gophers
Ground squirrels
Chipmunks

Grass-forb	Seedling-shrub		Intermediate	Mature	Old growth
Stand	initiation	Stem e	xclusion	Understory reinitiation	Old growth

Biological Diversity Quantification

- Indexes attempt to combine abundance, composition, dominance into single no.
- > Diversity at different scales
 - o Landscape level
 - o Community-Ecosystem level
 - o Population-species level
 - o Genetic level

Diversity at Different Scales

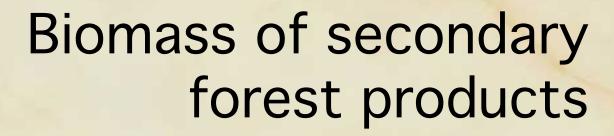
- Community-ecosystem Level
 - O How have natural disturbances and / or management activities affected species diversity?
 - O What is the function of a species in the community?
 - O Where are the areas of high species richness, endemism, or rarity and how well are they protected?
- Community Metrics
 - O Richness, composition, Shannon, Simpson

Lower Canopy Structure & Diversity

- ➤ Horizontal structure / diversity
 OSpecies Richness
 - ✓ Number of species present, n_i
 - **OSpecies Composition**
 - $\sqrt{p_i}$ = amt. of species i / amt. all spp.
 - OShannon Index (H')

$$\vee$$
 H' = $-\sum p_i$. $ln(p_i)$

OSimpson's Index (D)


$$\sqrt{D} = \sum [n_i(n_i-1)] / [N(N-1)]$$

usually expressed as 1/D

Lower Canopy Structure & Diversity

Vertical structure / diversity

➤ BSD is directly related to FSD

- Secondary Forest Products
 - o Floral arrangements (salal, ferns)
 - o Mushrooms
 - o Fiddle heads (Ferns)
 - o Others ...

Biomass of secondary forest products

Some Biomass Equation examples:

Shrubs

RUUR (trailing blackberry): TAB = -1.214 + 0.8392 (COV)

VACCI (Vaccinium species): TAB = 0.0 + 1.644 (COV)

Ferns

ATFI (lady fern): TAB = 0.0 + 1.235 (COV)

PTAQ (bracken fern): TAB = 0.0 + 3.1057 (COV)

LOD (DWD, CWD) Information: Importance

- Slows travel of surface water
- Critical habitat for some species
- ❖Plays a role in temporary carbon storage (slow release through decay)
- Contributes organic matter to soil

Vegetation & LOD Transect Surveys Field Methods

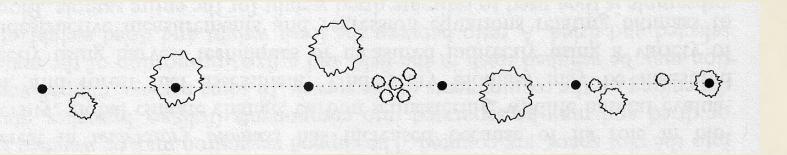
Assessing Lower Canopy, LOD Attributes

Objectives:

- To gain experience in application of two transect sampling techniques:
 - a. Point transect sampling for under- and ground-story vegetation; and,
 - Line intersect sampling for volume or biomass of dead / down material;
- To gain experience in application of fixed-area plot sampling for these same attributes;
- To gain familiarity with variability / reliability of lower canopy assessment data and the magnitude of possible measurement errors.

FIELD WORK

Equipment:


Hand compass, 100-ft cloth tape, calculator, DBH-tape, write-in-the-rain plot measurement cards, dichotomous plant ID key & other handout materials

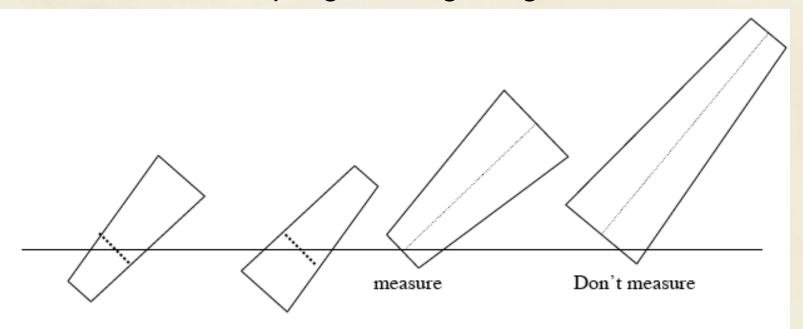
Procedure:

Each measurement team is assigned two 100-ft transects that will be used to perform one each of the *point transect* sampling technique for lower canopy vegetation and the *line intersect* technique for large organic detritus (LOD). The same transect will be used to locate a single sample point (plot center) at which two concentric, fixed-area, circular plots will be set up to assess the same two stand characteristics (understory vegetation and LOD).

Vegetation Survey - Transects

Point Transect Sampling for vegetation cover, composition

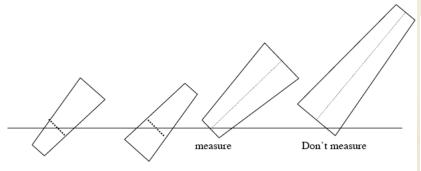
Record what is observed at a set of points at predetermined distances along a transect (bare ground, species, etc.). Make other comments, as applicable. The transect pictured would produce an estimate of 2/6, or 33% cover.


Vegetation Survey - Transects

Point Transect Sampling for vegetation cover, composition

Vegetation	Point Tra	nsect Car	rd	Page of				
Date		Tean	n	Forest				
Comp		Stan	d	length (ft)				
Point #	Spp. 1	Spp. 2	Other spp.	Comment(s)				
		†						

LOD Survey by Transect


Line Intersect Sampling for Large Organic Detritus

Measure and record the diameter at the point of crossing, perpendicular to central axis of piece. Measure and record the length of the piece, also.

LOD Surveys

Line Intersect Sampling for Large Organic Detritus

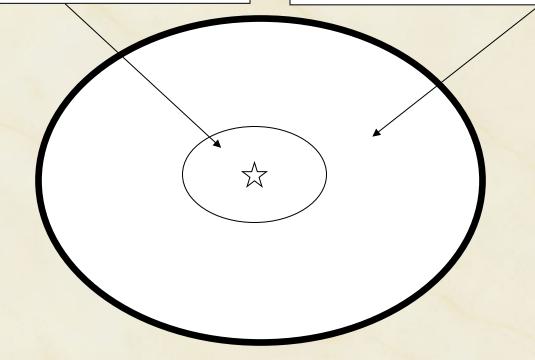
Measure and record the diameter at the point of crossing, perpendicular to central axis of piece. Measure and record the length of the piece, also.

LOD Survey - Transects

Line Intersect Sampling for Large Organic Detritus

LOD Line	Intersect C	Card		Page of			
Date		Team		Forest			
Comp.		Stand		Transect # length (ft)			
Piece #	Diam (in.)	length (ft.)	Stump?	Comment(s)			

Vegetation & LOD Plot Surveys Field Methods


Fixed-area plots for Vegetation & LOD

Small Plot - vegetation measurement

- same plot center as large plot
- -0.01 acre plot \rightarrow 11.8-ft radius

Large Plot - LOD measurement

- Shares plot center with small plot
- 0.10 acre plot **→** 37.2-ft radius

Vegetation & LOD Survey - Plots

Fixed-area plots for vegetation & LOD

Vegetation	on Plot Ca	rd	Pa	ge of		
Date		Team		Forest		
Comp		Stand_		Plot	Size (ac.)	
Species	Cover(%)	Avg. Ht. (ft)	Comment(s)			

LOD Plot Ca	rd		Pag	ge of			
Date		Team			Forest		
Comp		Stand			PlotSize (ac.)		
Piece #	Piece # D_b (in.) D_u (in.) length (ft.)		Stump?	Comment(s)			
	<u> </u>	<u> </u>			<u> </u>		
		<u> </u>					

- Need info on structure, variability, processes for:
 - O Grouping of stands into productivity classes
 - O Building inventory on critical habitat conditions
 - O I.D.-ing wildlife-habitat relationships
 - O Enhancement of grouping stands into risk classes
 - O Development of management targets for
 - √ Silvicultural manipulations
 - ✓ Managing potential fire hazard
 - √ Biological diversity maintenance

Summary Remarks

- Diversity at different scales
 - **O** Landscape
 - **O** Community
 - √ Community Lower Canopy Structure & Diversity
 - √ Horizontal / Vertical Structure
 - O Population Species
 - O Genetic
- Read Chpt. 10 in Husch, et al. 2003. Forest Mensuration. John Wiley & Sons, Inc. New York.

- Field Trip to St. Edward State Park
- Bring your PNW Plant ID Key
- OBring sturdy, closed-toe footwear pref. w/ ankle support
- Tue 17th, Wed 18th Oct. 2017
- Operate from behind Bloedel Hall (C-10 parking lot) *promptly* at 12:30 P.M.