Censusing Wildlife Populations

ESRM 304

Censusing Wildlife Populations

- Although several population parameters are of interest for different reasons (survivorship, movement patterns), we will focus on different approaches for censusing natural populations.
- We will concentrate on terrestrial vertebrates, but recall that by Washington State law insects, their eggs, and larvae are also protected wildlife.
- Methods vary as functions of species natural history, and because of this, the techniques are grouped by taxonomy and life style.

Amphibians

Pond-breeders

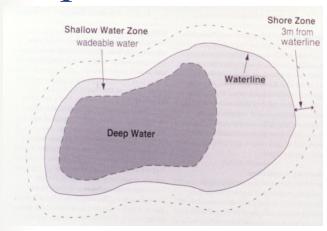
- Most frogs & toads, some salamanders
- Live at ponds or migrate seasonally between them and upland habitats
- Have pond-adapted larvae

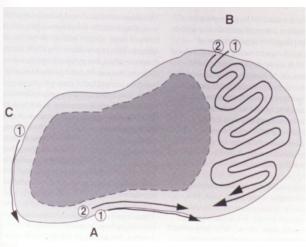
Amphibians

Stream-breeders

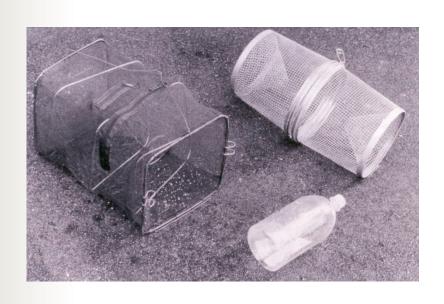
- Some salamanders and one frog
- Live in or near streams
- Have stream-adapted larvae

Amphibians


- Upland breeders
 - Several salamanders
 - Lay eggs on moist sites on land
 - Full development in egg
 - Fully terrestrial—no aquatic larval stage


Amphibians: Pond Surveys

- Pond-breeding frogs and salamanders
 - Season: spring breeding period
 - Equipment: rubber boots/waders, dip net, holding bucket, ruler and spring scale
 - Targets: adults, eggs, and larvae


Amphibians: Pond Surveys

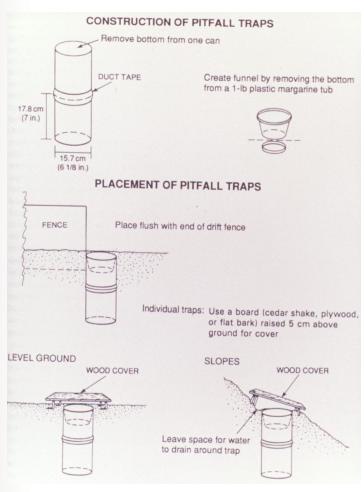
- Search mode by pond zone
 - Shore: VisualEncounter Surveys(VES) for adults
 - Shallow water: VES and net capture of adults, eggs, & larvae
 - Deep water: trapping, diving for adults & larvae

Amphibians: Pond Surveys

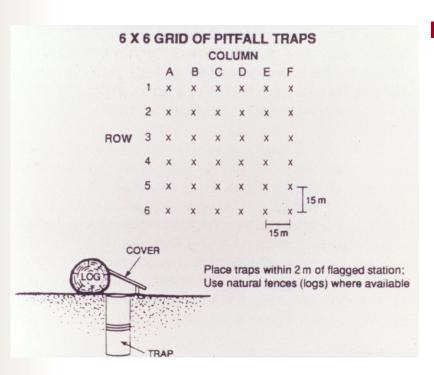
Aquatic traps

- Galvanized minnow trap
- Collapsible net trap
- Pop bottle trap
- Pond surveys yieldCPUE estimates

Amphibians: Stream Surveys


- Stream-breeding frogs & salamanders
 - Season: late summer
 - Equipment: rubber boots/waders, small nets, wire screens, hand rakes, holding bucket, ruler, spring scale
 - CPUE estimates and density for larvae

Amphibians: Terrestrial Searches


- Upland and pondbreeding salamanders
 - Searches constrained by time or area
 - Season: after spring or fall rains
 - Equipment: potato or hand rakes, plastic bags, ruler, spring scale

Amphibians: Pitfall Trapping

- Upland and pondbreeding salamanders
 - Season: after spring or fall rains
 - Equipment: posthole diggers, cans, lids, margarine tubs, covers, ruler, spring scale
 - CPUE estimates

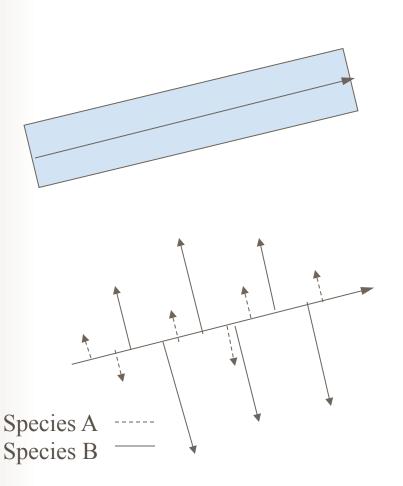
Amphibians: Pitfall Trapping


Pitfall arrays

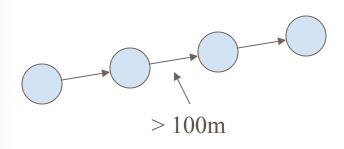
- Often placed in grids with various spacing
- Allows thorough coverage of an area
- Arrays operated for various time spans(1-4 weeks common)

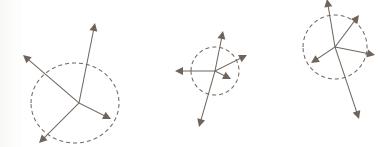
Reptiles

Diving for turtles in ponds and rivers

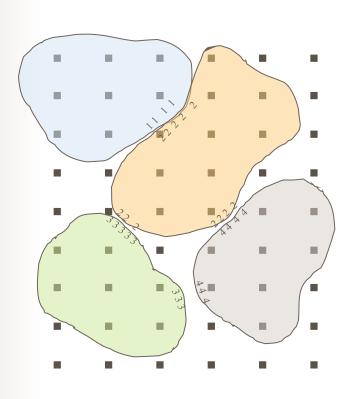

Birds

Identification issues

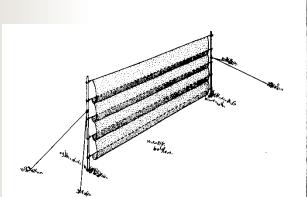

- Need to know birds
 by call because
 many species are
 hard to see in forests
 or hard to identify to
 species
- Censuses rely on IDby sight (10%) andear (90%)


Birds: Transect Censuses

- Useful in relatively simple environments both land and sea
 - Fixed width: simple, but biased against birds with low detection
 - Variable width:adjusts width as afunction of detection


Birds: Circular Plots

- Useful in complex environments
 - Fixed radius plots: similar to fixed width transects
 - Variable radius plots (VCP): allow for detection functions
 - Plots arrayed uniformly or at random points


Birds: Spot Mapping

- Breeding territory mapping
 - Locate singing males and disputes along boundaries
 - Over repeated visits edges of territories become clear
 - Yields breeding pair or territory density

Birds: Banding

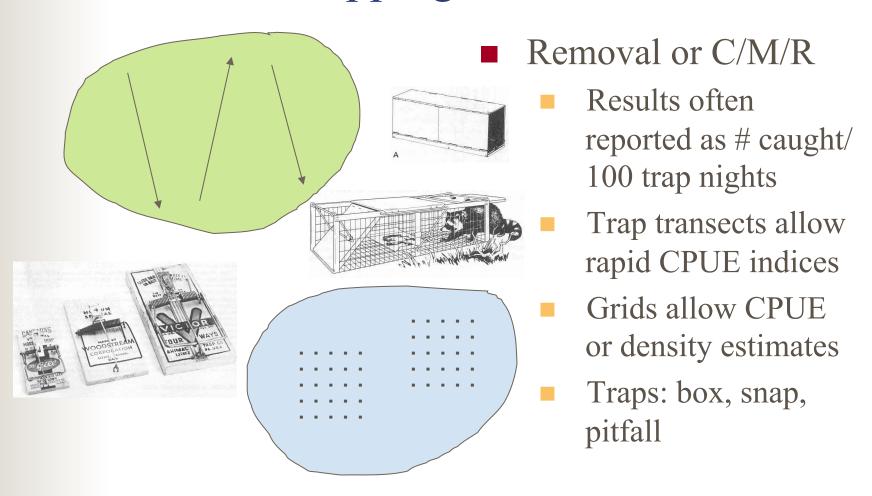
Numerically- and color-coded bands

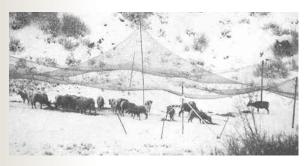
Provides individual marks for C/M/R, survivorship, and site fidelity records

Metal or plastic tags

Capture with mist nets, canon, or drop nets

Mammals

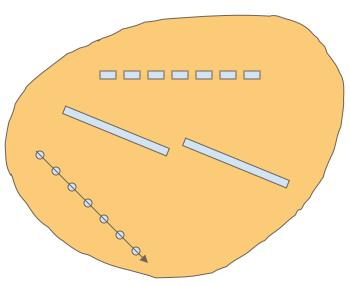




- Diverse natural histories require different approaches
- Removal or C/M/R trapping common for small mammals
 - Capture and radiotelemetry for large mammals

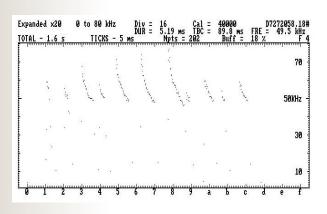
Mammals: Trapping Small Mammals

Mammals: Trapping Large Mammals



- Traps set in areas of congregation or visitation
 - Often radio-collared
 - Traps: Clover, culvert, drop nets, corral traps
 - Hounds especially effective for treeing bobcats and mountain lions

Mammals: Pellet Plot Surveys


Pellet plots

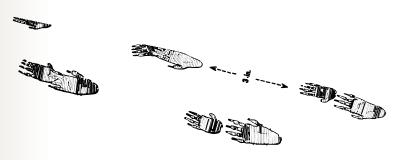
- Involve periodic counts of pellet groups on permanent plots
- Yield an index of use for an area
- Plots are variously shaped and arrayed depending upon habitat

Mammals: Bats

A challenging group

- Direct capture with mist nets, harp traps for C/M/R estimates
- Echolocation detectors for use or activity indices
- Exit counts at day roosts (buildings, caves) for colony estimation

Mammals: Artifacts



- Take advantage of sign of presence
 - Can count artifacts to index territories: red squirrel middens, woodrat nests
 - Artifacts can indicate presence in an area: fresh burrows of many species, "bear trees"

Mammals: Tracking and Call Surveys

Tracking

Tracks in snow, sand, and on tracking plates signal presence and can yield use indices

Vocalization

 Calling routes index presence of vocal species: squirrels, esp. coyotes, wolves

References on Sampling

- Silvy, N.J., ed. 2012. The wildlife techniques manual, 7th edition: vol. 1: Research. Vol. 2: Management. Johns Hopkins University Press. 1,136pp.
- Heyer, W.R. et al., eds. 1994. Measuring and monitoring biological diversity. Standard methods for amphibians. Smithsonian Institution. 364pp.
- Wilson, D.E. et al., eds. 1996. Measuring and monitoring biological diversity. Standard methods for mammals.
 Smithsonian Institution. 409pp.