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Abstract

Natural complexity can best be explored using spatial analysis tools based on concepts of landscape as process continuums that
can be partially decomposed into objects or patches. We introduce a five-step methodology based on multi-scale segmentation
and object relationship modelling. Hierarchical patch dynamics (HPD) is adopted as the theoretical framework to address issues
of heterogeneity, scale, connectivity and quasi-equilibriums in landscapes. Remote sensing has emerged as the most useful
data source for characterizing land use/land cover but a vast majority of applications rely on basic image processing concepts
developed in the 1970s: one spatial scale, per-pixel classification of a multi-scale spectral feature space. We argue that this
methodology does not make sufficient use of spatial concepts of neighbourhood, proximity or homogeneity. In contrast, the
authors demonstrate in this article the utility of the HPD framework as a theoretical basis for landscape analysis in two different
projects using alternative image processing methodologies, which try to overcome the ‘pixel-centred’ view.

The first project focuses on habitat mapping using a high dimension multi-scale GIS database. Focal patches are derived
through aggregating automatically generated landscape segments using sub-patch information including dominant tree crown
densities and species. The second project uses fractal-based segmentation to produce multiple candidate segmented agricultural
scenes, and then develops a decision framework to choose the combination of segmentation levels best suited to identifying
shrub encroachment. The challenge and flexibility of themulti-scale segmentation/object relationship modellingapproach lies
in the defining of the semantic rules which relate the lower level landscape units or holons to higher levels of organization. We
seek to embrace the challenges of scale and hierarchy in landscapes and have tested two different ways to decompose complex
natural environments into focal units utilising topological relations to model between the smallest units of differentiation and
the focal level. We believe the use of a HPD theoretical framework will help development of better tools for characterizing the
patterns and processes, acting through a range of scales, which make up landscapes.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Landscapes, patches and image objects are con-
ceptual containers used by scientists to systematically
assess dynamic continuums of ecologic process and
flux. The continuums of flux that comprise ecologi-
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cal systems are a challenge to monitor and analyze
because the underlying processes operate over a wide
range of spatial, temporal and organizational scales,
of which our observation techniques capture only a
jittery kaleidoscope of pattern. Stated another way,
human perception, including perception augmented
with earth observation (EO) methods and tools, per-
mits only a partial capturing of the flow of ecological
events, andLevin (1992)has likened our observations
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of process (one moment of time and at a single scale)
to a low-dimensional slice through a high dimensional
cake. In some cases, the scale of these observations
may have been chosen deliberately to elucidate key
features of the natural system; more often, the scales
are imposed on us by anthropocentic focus, percep-
tual deficiencies, or by technological or logistical
constraints (Steele, 1978). Using the cake analogy, the
challenge to increase the effectiveness of monitoring
methodologies in ecological analysis can be decom-
posed into the following tasks: optimise the temporal
and spatial resolution of slices, for target organisms
or communities; maximize the amount of information
extracted from each slice; and, intelligently combine
information from slices of different temporal and
spatial resolution. If there is no single “correct” scale
with which to describe populations or ecosystems
(Wiens, 1989), we conclude that our efforts should
be focused on the second and third tasks. We concur
with Levin (1992), who suggests that

. . . the problem is not to choose the correct scale
of description, but rather to recognise that change
is taking place on many scales at the same time,
and that it is the interaction amongst phenomena on
different scales that must accompany our attention.
(p. 1947)

With this in mind, we focus on the information
extraction and information combination tasks, sug-
gesting a methodological framework drawn out of eco-
logical theory, which should be applicable to a range
of ecological analyses and management questions.

Landscape ecology is the study of the relationship
between spatial pattern and (interconnected continu-
ums of) ecological processes. A useful starting point
for deriving process from pattern has been to explore
landscape as groups of plant communities or ecosys-
tems forming ecological units (patches) which have
distinguishable structure, function, geo-morphology,
and disturbance regimes (Forman and Godron, 1986).
Central to this epistemology is the problem of properly
distinguishing analysis units. Replacing arbitrary de-
lineations of landscape units with ecologically sound
ones is vital since ecological maps are increasingly be-
ing utilized outside the purely scientific sphere. This
is largely driven by politicians, land managers and
government statisticians who want to be able to ap-
ply pressure response models to landscape units. They

want to have quantified answers and operational pro-
cedures in order to answer questions such as “What is
the current level of landscape diversity and how does
it compare with historic or sustainable levels?” and
“What are the trends in habitats or populations of a
particular species?” This trend of increased demand
for applied landscape or spatial analysis is especially
apparent within the European Community, where at-
tempts to find operational, yet simplified procedures
for the monitoring of landscape structure and land-
scape diversity are driven by needs of common agri-
cultural policy formulation (seeEC/EEA, 2000) and
nature conservation strategies (seeBlaschke, 2001).

Recent advances in geographic information (GI)
tools and computer development offer the potential
for a more dextrous handling of the mapping or
decomposition of complex environments. We argue
in this article that ecological theory points to there
being multiple solutions for the decomposition of
landscape, and that we should develop analysis tools
that are flexible enough to embrace this ambiguity
yet robust enough to support ecological science and
sound management decision-making. We are seeking
to address the fourth goal of ecosystem research as
suggested byMüller (1997, p.142):

to integrate ecosystem research and (environmen-
tal) ecosystem monitoring into an environmen-
tal information system [with] which [to] provide
strategies for sustainable landscape management
and for a holistic evaluation of ecosystem states.

Our paper begins with a brief examination of es-
sential theoretical concepts of complexity, emergence,
hierarchy, scale and non-linearity, and with a summa-
tion of a synthesis of theory designated hierarchical
patch dynamics (HPD) byWu (1999).

The robustness of landscape ecological analysis
will increase by the degree to which subjectivity in
drawing lines between landscape entities, or patches,
is reduced. Thus, in the second section of the paper,
we describe a novel methodological tool that is de-
signed to map an HPD-defined reality. These tools
are grouped into a methodology calledmulti-scale
segmentation/object relationship modelling. The chal-
lenge for and flexibility of themulti-scale segmenta-
tion/object relationship modellingmethodology lies
in the defining of the hierarchy’s object relationships.
In the final section of the paper, we provide examples



C. Burnett, T. Blaschke / Ecological Modelling 168 (2003) 233–249 235

of two different methods to decompose complex natu-
ral environments into focal units utilising topological
relations to model between the smallest units of differ-
entiation, the focal level and the landscape level. The
first project focuses on habitat mapping using a high
dimension multi-scale GIS database. Focal patches
are derived through aggregating automatically gener-
ated landscape segments using sub-patch information
including dominant tree crown densities and species.
The second project uses fractal-based segmentation
to produce multiple candidate segmented agricultural
scenes, and then develops a decision framework to
choose the combination of segmentation levels best
suited to identifying shrub encroachment.

2. Theoretical framework

A pre-requisite to developing landscape monitor-
ing and analysis methodology is a theoretical compre-
hension of the structure and functioning of ecological
systems (Müller, 1997). In the next sections, we out-
line some theoretical components, which we believe
are the foundation for the methodology building that
follows.

2.1. Theoretical components explaining landscape
structure

2.1.1. Landscape heterogeneity and patches
The theory of self-organization suggests that dis-

sipative self-organization results in the spontaneous
creation of macroscopically ordered spatio-temporal
and functional structures (Müller, 1997). These struc-
tures create local heterogeneity that may be defined
as the uneven, non-random distribution of ecologi-
cal units (Kolasa and Pickett, 1991). Farina (1998)
describes three types of heterogeneity: temporal het-
erogeneity, functional heterogeneity and spatial het-
erogeneity. The interwoven patterns of heterogeneity
and homogeneity have as their basic units the land-
scape element or patch. Patches may be defined as
areas surrounded by a matrix, and may be connected
by corridors (Forman, 1995) or as conceptual group-
ings of spatial heterogeneity, that are ubiquitous and
which vary at different scales (Wu, 1999). It is im-
portant to emphasize that patches are ephemeral and
to a degree arbitrary, gentle compartmentalisations

of continuums of ecological processes that defy crisp
boundary placement.

Various methods and measures have been developed
to describe complex spatial patterns found in nature
(Turner and Gardner, 1991; Wu and Marceau, 2002).
Some success has been made based on the theory of
fractal dimension (Mandelbrot, 1977), which seems
to be appropriate for describing the irregular spatial
structure of patchiness for various landscape proper-
ties (Milne, 1991). The fractal approach can be utilized
in different ways, depending on whether it is used for
a characterization of overarching landscape pattern or
for a description of a set of patches in terms of a mosaic
and its fractal structure. Alternatively, an exploration
of the fractal dimension of individual patches (which
create a mosaic of patches) may be made by measur-
ing the fractal dimension of their shapes, for instance
using perimeter-length relations or perimeter-area re-
lations (seeNikora et al., 1999).

2.1.2. Scale
When exploring the multi-formity of patches and

the ephemeral nature of boundaries an important defin-
ing concept is scale. Scale has been defined as the
period of time and space over which signals are inte-
grated or smoothed to give a message (Allen and Starr,
1982) and can be discussed in terms of grain and ex-
tent. Grain is the minimum area at which an organism
perceives and responds to the patch structure of land-
scape (Kotliar and Wiens, 1990). Extent is the coars-
est scale of spatial heterogeneity at which organisms
react (Farina, 1998). Scale may be measured in abso-
lute units or relative to the phenomenon under inves-
tigation, the ‘focal scale’.Marceau (1999)provides a
comprehensive review of the scale issue in the social
and natural sciences, andMarceau and Hay (1999)
provide a description of recent research into the issue
of scale in remote sensing.

Scale is the spatial and temporal parameterization
of our perceptive window on reality. It bounds the eco-
logical phenomena that we can observe (for a compre-
hensive review, seeWithers and Meentemeyer, 1999).
We have made progress linking ecological pattern and
process at a wide range of scales, with more suc-
cess at the scale of individual organisms. However,
techniques for extrapolating or translating information
from one scale to another, including scaling up and
scaling down, are poorly understood (King, 1997; van
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Gardingen et al., 1997; Wu, 1999). Recent studies are
addressing this gap (Hay et al., 2002).

A system functions across a variety of scales and
when observed at one resolution we perceive certain
characteristics filtering most of the noise, owing to
the close layering (sub and upper layers) of the en-
tire organization (Farina, 1998). However, when we
observe landscape systems across a scale continuum,
as a video camera attached to a rising balloon will
record, we can identify sequences of images that con-
tain roughly the same amount of information on the
heterogeneity of the surface below (see, for example
Fig. 1). Eventually, the information content changes
and a spatial threshold passes. Scale thresholds are
never crisp, since they mark the boundaries between
scale continuums, but are made hard byfiat.

2.1.3. Scale and aggregation
Many of the explorations of scale in landscape anal-

ysis have been made in order to better understand
the effect of arbitrarily grouped spatial phenomena on
pattern-process relationships, known as the modifiable

Fig. 1. The hierarchical structure of an open pasture and meadow test area are here captured through multiscale segmentation into 3
domains of scale. We can focus on a particular scale domain by examining the corresponding hierarchical network of image objects. The
image-object database (right) encapsulates the landscape as a network of dissipative structures.

areal unit problem (MAUP) (Openshaw, 1984). The
MAUP originates from the fact that a large number of
ways exist in which a study area can be divided into
non-overlapping areal units for the purpose of spatial
analysis (Marceau et al., 1990). Fig. 2 demonstrates
an example of the scale problem in remotely sensed
data; in it, a range of resolutions of measurement are
recorded in a single flight-line (i.e. one image) of air-
borne scanner data, but delivered to the user at a nom-
inal scale (Burnett et al., 1999).

2.1.4. Hierarchy and quasi-equilibria
Self-organization and scale give us scale thresh-

olds, explained using hierarchy theory as apparent
changes originating from the filtering capacities of
the superior levels of organization, which react as
buffers to the signals that are sent out by the subunits
of lower hierarchical levels (Müller, 1997). In hierar-
chy theory, objects are apparent as separable entities
because of differences in flux rates, by gradients
(Simon, 1962; Koestler, 1967). Relatively strong gra-
dients will evoke more apparent boundaries, or local
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Fig. 2. For a single line of airborne multi-spectral scanner data, pixel size normalization of multiple resolutions of acquisition produces
‘double’ pixels when nearest neighbour resampling is used. The image swath has been resampled so that every pixel represents a nominal
1 m2 of ground space. The topography of forested landscape imaged is severe (top left diagram), and over the course of this 4 km flight-line,
the along-track resolution is constant (dotted line, top right diagram) while the across-track resolution varies (solid line). Distortion caused
by pitching of the aircraft is observable throughout the flight-line (b and d). However, the acquisition scale differences have resulted in more
‘double’ pixels being added to the western end of the swatch (a and b) as compared to the eastern (c and d) (fromBurnett et al., 1999).

heterogeneity. Boundaries manifest both between ob-
jects at the scale spatial (and temporal) scale and
between objects at different scales. Decomposabil-
ity and decomposition (i.e. the process of separat-
ing and ordering system components according to
their temporal or spatial scales or both) are two of
the base tenets of hierarchy theory. The decompos-
ing of a landscape’s hierarchical structure through
multi-scale analysis is an important part of landscape
analysis andO’Neill et al. (1986) recommends the
use of three hierarchical levels as a minimum in an-
alytical studies. Finally, landscapes are non-linear

systems; systems that can exhibit instability at lower
levels, but which exhibit complex meta-stability at
broader scales. An analysis methodology should be
flexible enough to account for quasi-equilibrium of
landscapes.

2.2. Hierarchical patch dynamics

Patch dynamics provides a powerful way of dealing
explicitly with spatial heterogeneity.Wu and Loucks
(1995)suggest the integration between hierarchy the-
ory and patch dynamics via the HPD paradigm and lay
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a theoretical framework for a theory-driven breaking
down of ecological complexity through a hierarchical
scaling strategy.Wu (1999), drawing on the Koestler’s
concepts of flux rates in hierarchy, suggests that eco-
logical systems are nearly completely decomposable
systems because of their loose vertical and horizontal
coupling in structure and function. The term “loose”
suggests “decomposable” and the word “coupling” im-
plies resistance to decomposition.

When translating hierarchy theory to landscape
ecology, holons are synonymous with patches: the
ecological unit at a particular scale. Patches interact
with other patches at the same and at higher and
lower levels of organization through loose horizon-
tal and vertical coupling.Fig. 3 shows a conceptual
diagram of hierarchy with reference to a mixed for-
est/agriculture landscape. In it, the individual trees
of level −1 are more tightly coupled with each other

Fig. 3. A concept of the hierarchy concept (based onWu, 1999). The left side of the diagram shows inter-holon structure. A range of
gradients in ecosystem processes or flux produces ‘loose coupling’ and the generation of surfaces between holons. These surfaces vary in
strength or contrast, resulting in a perceived independence of objects and scales of objects: scale thresholds. The right side of the figure
shows a hypothetical decomposition of a forest and agricultural landscape into three hierarchical levels: the island patch in a sea matrix
(holon +1), a forest patch (focal, holon 0), and individual trees as patches (holon−1).

than with the level 0 patches above, yet there remains
important inter-relationships. The varying strengths
of interactions between holons produce surfaces or
filters (Koestler, 1967). Levels and holons exhibit
time–space separability, in that they are separated not
only spatially by varying strengths of interaction but
also temporally. The rates of interaction and process
are key to building a hierarchical model of a complex
system (Koestler, 1967; Wu, 1999) and thus central
to our methodology.

Wu and Loucks (1995)andWu (1999)suggest that
the HPD theoretical framework can be used to per-
ceive and model landscape as a hierarchical mosaic
of patches although it is difficult in empirical studies
to distinguish clearly between nested and non-nested
hierarchies (Allen and Starr, 1982), at least prior to
investigation. The list below is a digest of the HPD
framework found inWu (1999).
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1. Ecological systems can be perceived as spatially
nested patch hierarchies, in which larger patches
are made up of smaller, functioning patches.

2. The dynamics of a given ecological system can
be derived from the dynamics of interacting
patches at adjacent hierarchical levels. Patches at
higher levels impose top-down constraints to those
lower levels by having slower or less frequent
processes, while lower levels provide initiating
conditions and mechanistic explanations for, and
give apparent identity to, higher levels through
interactions among patches. Distinctive charac-
teristic time scales of patches at lower versus
higher levels are the fundamental reason for the
near-decomposability of ecological systems.

3. Pattern and process have components that are re-
ciprocally related, both pattern and process, as well
as their relationship, change with scale.

4. Non-equilibrium and stochastic processes are com-
mon in ecological systems. In general, small scale
processes tend to be more stochastic and less pre-
dictable. However, non-equilibrium and stochastic
processes do not necessarily work against stability.
They usually constitute mechanisms that underlie
the apparent stability of systems.

We believe that a better landscape analysis method-
ology can be built upon a combination of HPD
theoretical base, an object-orientated modeling envi-
ronment and advanced GIS and RS methods.

3. Methodological framework

3.1. Critique of the pixel approach

Remote sensing has become an essential data source
for landscape analysis. No other survey technique can
operationally provide a regularized survey of land-
scape with which to assesslandscape levelpatterns
and change. However, remotely sensed images, like
all observations of reality, are an imperfect capturing
of patterns, which are themselves an imperfect mirror
of ecosystem processes.Cracknell (1998)explores the
question “What’s in a pixel?” and divides his critical
examination of the ‘pixel’ into geometry, mixed pixels,
point spread functions and resampling. He concludes
that the ‘pixel’ is a more complicated entity than is

generally acknowledged, and we must approach land-
scape analysis using EO data critically.

The sensor GIFOV is often imposed on us by tech-
nological or logistical constraints (Steele, 1978) and
not solely based on the needs of the ecologist. The tra-
ditional method for analysis of EO data in landscape
research is the classification of pixels based on pixels
in the same land cover class being close in spectral
feature space. This does not hold true for complex en-
vironments and their respective classifications. In ad-
dition, the pixel-centred view is usually uni-scale in
methodology, exploring the pixels of only one scale
of imagery and of only one scale within the image.

By ignoring concepts of hierarchy and scale in the
landscape processes driving pattern creation, these ap-
proaches are still overly ‘pixel-centred’ (Townshend
et al., 2000). They adhere to a concept of the pixel
as a spatial entity (Fisher, 1997) that is assumed to
have a de facto relationship to objects in the land-
scape. Uni-scale, pixel-based monitoring methodolo-
gies have difficulty providing useful information about
complex multi-scale systems. If we accept that the
reality we wish to monitor and understand is a mo-
saic of process continuums, then our landscape anal-
ysis must make use of methods which allow us to
deal with multiple, yet related scales within the same
image and with multiple images of landscape. In-
creasingly used multi-scale methods in landscape ecol-
ogy include semivariance analysis (Faber and Förstner,
1999), wavelet analysis (Sheikholeslami et al., 2000),
fractal analysis (Milne, 1991; Nikora et al., 1999), and
lacunarity analysis (Plotnik et al., 1993). O’Neill et al.
(1992)have also expanded percolation theory to hier-
archically structured landscapes. Advances have been
made in exploring hierarchy in image analysis, for
example in the nested scene models and image seg-
mentation ofHay et al. (2002). Landscape researchers
now have the benefit of working with the next gener-
ation EO data sets, comprising (1) images of a signif-
icantly finer spatial resolution, and (2) multiple scales
of data simultaneously, thus opening up the potential
for analysis methodologies that are better adapted to
the self-organized complexity of landscapes.

3.2. Partitioning an HPD-conceptualised reality

Our analysis methodology is designed to utilize in-
formation in the scales inherent in our spatial (image)
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data sets in addition to a range of auxiliary data sets.
By scales in plural, we refer to the exercising of a
multi-scale image data set, including for instance both
airborne and satellite data, but also to the scales of
information inherent in single images. The latter is
possible because themulti-scale segmentation/object
relationship modellingmethodology is a move away
from pixel-based analysis, to an object-based analysis,
and multiple scales of objects can be explored within a
single data set. In the following section, we articulate
the methodological steps followed in themulti-scale
segmentation/object relationship modellingapproach
including GI database building, segmentation, object
relationship model building, visualization, andquality
assessment. In Section 4, we provide more detailed in-
formation on the methods specific to the two example
studies.

3.3. GIS building

The main prerequisite for our methodology is the
collating of GI into database of geo-referenced sur-
vey, sample and auxiliary data. Survey data include
any systematic and continuous assay of landscape.
Surveys are often stored in raster format and include
digital aerial photograph mosaics, scanning LIDAR
data, airborne spectrometer swathes and satellite im-
ages. Sample data are higher resolution information
on selected phenomenon of interest in the landscape,
which are unfeasible to collect at the landscape
level. For analysis of urban landscapes, such data
may include spectral values, collected in situ with
hand-held radiometers, of features such as vegetation,
roofing material or sealed surfaces. For less anthro-
pogenically modified landscapes, sample data may
include distribution and habitat data from bird and
insect investigations, or the distribution and species
of dominant trees. Auxiliary data include other data
sets which could be considered to be part of either
category, for instance derived vector data such as
topographic contours, road network and cadastral in-
formation, and raster digital elevation models (DEM).
All three types of spatial data can now be managed
(geo-referenced, stored and visualized) using any
commercially available or open source geographic
information systems (GIS).Fig. 4 presents some of
the data layers available in a high dimension GIS
built specifically for landscape analysis. By high di-

mension we refer to multiple temporal slices, spatial
resolutions and sources.

3.4. Segmentation

Segmentation is, not surprisingly, the key to the
multi-scale segmentation/object relationship mod-
elling methodology. Technically, segmentation is not
new (seeHaralick et al., 1973), but it is as yet sel-
dom used in image processing of remotely sensed
data. Especially within the last two years, many new
segmentation algorithms and applications have been
tested in geoscience applications, but few of them lead
to qualitatively convincing results while still being
robust and operational (Blaschke and Strobl, 2001).

Central to our methodology, thus, is the issue of
meaningful objects. As stated above, because we be-
lieve that ‘natural’ hard boundaries are antithesis to a
view of landscapes as continuum mosaics, we turn to
HPD theory for guidance. Withmulti-scale segmenta-
tion, we are searching for the gradient of flux zones
between and within holons (patches): areas where the
varying strengths of interactions between holons pro-
duce surfaces. To some extent these transitions are
independent of the specific research question being
addressed, but not completely.Multi-scale segmenta-
tion is often iterative, as discussed below. Method-
ologically, this equates to searching for changes in
image object heterogeneity/homogeneity. The number
of methods for segmenting an image is legion (for
an overview, seeHaralick and Shapiro, 1985; Ryherd
and Woodcock, 1996; Kartikeyan et al., 1998; Baatz
and Schäpe, 2000; Schiewe et al., 2001). Common
approaches use region growing or thresholding algo-
rithms, but many derivatives for specific applications
such as grey scale, hyperspectral images or data fusion
of different sensors exist.

3.5. Object relationship model building

Once a suite of segmentations has been derived
from the image or images, it is necessary to build
a model of the relationships between the segmented
image objects. The building of the inter-object re-
lationship model is described on the right side of
Fig. 5. Some object relationships are automatically
derived. For instance, the characteristics of level−1
objects (such as mean spectral values, spectral value
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Fig. 4. Example of data layers from a high dimensional landscape analysis GIS. From top left to bottom right, the layers consist of
Minolta digital camera mosaic (1 m GIFOV), a swath of AISA airborne spectrometer data (2 m GIFOV), Finnish base map (1:20,000),
Landsat Tematic Mapper (30 m GIFOV), thematic map (1:10,000), digital elevation model derived from aerial photographs (resampled to
1 m resolution).

heterogeneity, and sub-object density, shape and dis-
tribution) can be automatically calculated and stored
in the description of each level 0 object. On the other
hand, other relationships are semantic, requiring the

knowledge of the expert on the landscape in question,
at least for training purposes. Relationships of this sort
may include the defining of rules to collect segments
with characteristics of a ‘road’ into a single linear
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Fig. 5. Schematic showingmulti-scale segmentation and object
relationship model buildingsteps. On the left, a single image
of 0.4 m GIFOV is segmented into four layers of segments. All
segments are stored in vector format in the database. On the right,
the links between segmented objects are built up as part of the
object relationship model buildingstep in two ways. Some links
(relationships, rules in the database system) at made automatically
(light lines), as the characteristics of the segment are calculated and
stored (e.g. mean spectral value, mean within patch heterogeneity),
while other links (dark lines) are built by the expert based on
knowledge of the hierarchical nature of the ecosystem.

level 0 object. This relationship model information
can be stored in the system through a variety of mech-
anisms, for example as attributes in GIS vector objects
or in a proprietary object-orientated database format.

The building of the relationship model links the
holons in the hierarchy, and, we posit, surmounts the
problem of MAUP. From a hierarchical point of view,
MAUP is not really a “problem” per se; rather, it re-
flects the ‘nature’ of the real systems that are hierar-
chically structured (Jelinski and Wu, 1996).

3.6. Visualization

It is common in landscape analysis for a crystalliza-
tion of our understanding of the patterns (our object
relationship model) to be output. This visualization, a

map or schematic (on paper or computer monitor), will
necessarily emphasize some objects and relationships
over others. The key to this step in the methodology
is a solid understanding of the research question. For
instance, in a urban forest example, thevisualization
rules can be designed to hide sub-objects below certain
super objects, for instance having relationship rules
that ‘identify’ it as anthropogenic objects (houses,
roads), while showing deeper levels of object hier-
archy within ‘forest’ and ‘agriculture’ super-objects.
The derivation of a map may be accomplished through
static modeling in GIS, via interactive GIS tools, or
by firing a set of rules in a multi-scale segmentation
system.

3.7. Quality assessment

Quality assessment is an essential component of
themulti-scale segmentation/object relationship mod-
elling methodology, both at the final stage when a vi-
sualization (map) has been derived from the system,
and at each of the preceding stages. For example, at
the GIS database buildingstage, quality assessment
is the essential for tracking the accuracy of image to
image registration. Derived data sets, such as those
generated by algorithms that search for dominant tree
crown positions, must also be assessed for error. This
error assessment can be used in two ways: for infor-
mation on how to improve data when new data inges-
tion is being considered and to carry forward into the
object relationship building model for use when anal-
ysis is being conducted and results produced.

The five-component methodology described above
can, on demand, produce a candidate discretization of
space—a map. But more than that, the system can pro-
duce a variety of maps because the model and data
that elucidates a map continues to exist behind the
scene. The initial GIS database building stage can be
considered as quasi-independent of specific research
questions. With a modicum of change (in segmenta-
tion levels, relationship model and visualization rules),
the same system can be tuned for a variety of different
needs. This is the basis for our claim tomulti-scale
segmentation/object relationship modellingbeing flex-
ible. The methodology is also relatively reproducible,
compared to human interpretation. The methodology
provides some feedback on uncertainty in the classifi-
cation, and through its ‘modeling nature’ provides for
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an examination of what aspect of the system, whether
data or heuristic, is weakest. Finally, the methodol-
ogy is open in the sense that it is not difficult for new
data sets to be added and for new relationships to be
derived with which to strengthen the analysis.

4. Example studies

We take HPD as a theoretical starting point and
evaluate themulti-scale segmentation/object relation-
ship modellingmethodology described above through
the development of two landscape analysis projects.

4.1. Ruissalo Island: from individual trees to
habitat units

The first example is taken from a study seeking to
delineate habitat patches in a mixed hardwood and
deciduous forest. The forests studied are located on
the 11 km long island of Ruissalo, west of the city
of Turku in SW Finland. The forest patches in the
landscape differ in tree species, stem density, age
and purity; ranging from dense immature birch (Be-
tula pendula) plantations to mature stands of lime
(Tilia cordata), Scots pine (Pinus sylvestris), Norway
Spruce (Picea abies) and oak (Quercus robar) ex-
hibiting early patch-phase dynamics. Due to natural
characteristics and long term human management,
the island is home to one of the richest species com-
munities in Finland (Vuorella, 2000). The island is
now managed as a recreation area but with a large
proportion in nature reserves. The patchiness of the
landscape, resulting from hundreds of years of use as
meadows and pasture for grazing, wood production
and scattered habitation, provides an intriguing envi-
ronment to test new habitat mapping methodologies.

We adopted the five-step methodology described
above to delineate patches (level 0 holons) of suit-
able habitat for the Three-toed woodpecker (Picoides
tridactylus). Aspects of this study which are dif-
ferent from the later example are the reliance on
semi-automated image processing for dominant tree
crown detection and speciation, and heuristic-based
aggregation of sub-patches using a purpose-built in-
teractive GIS tool. In theGIS buildingphase, over a
dozen spatial data sets were geo-referenced includ-
ing aerial photography, digital camera and IR video

mosaics, a digital elevation model, cadastral data
and a Landsat TM scene (Fig. 4). Preliminary data
processing was then applied. For instance, individ-
ual dominant tree crown detection and delineation
algorithms were applied to the 1 m ground instanta-
neous field of view (GIFOV) digital camera data. The
crown delineation by local maximum (LM) filtering
(Fig. 6) was conducted using software and techniques
described byGougeon (1997). A raster density map
was created from the results of this image processing.
Crowns were also delineated as regions via a seg-
mentation algorithm using a modified implementation
of the method presented byNarendra and Goldberg
(1980). Spectrally similar adjacent segments (using
three colour channels) and segments smaller than a
user-defined minimum size were merged with their
neighbouring segment. The similarity of the segments
was measured by means oft-ratio (Hagner, 1990).
Using multi-spectral imagery at a lower resolution
(airborne AISA at 2 m GIFOV), the delineated ob-
jects (LM and crowns) were separated spectrally
using spectral signatures and a raster tree species
layer was generated with pixel values corresponding
to species codes. LM and crowns became, in effect,
level −2 scene patches, with LM being patches at the
theoretical lower limit in size: one pixel.

In the segmentation step, the digital camera image
was again segmented using the algorithm described
above. However, this time the scale of this segmen-
tation was set to elicit clumps of crowns. This set of
image objects was labeled level−1 patches. These
segments were taken into the GIS database and in the
object relationship model buildingstep, attributes for
each segment (i.e. characteristics of−2 patches) were
populated through a semi-automated process of data
layer mining. Finally, in thevisualizationstep, the−1
patch vectors were aggregated to form focal (level 0)
patches based on a model of nesting/foraging habi-
tat. This aggregation was done in a semi-automated
fashion, with both rules-based aggregation and aggre-
gation by a user using a GIS tool developed for the
project (Fig. 6). The result was a level+1 or landscape
level map of candidate habitat for the three-toed wood-
pecker (Picoides tridactylus). At this time, aquality
assessmentstep is being conducted. The over-all habi-
tat map accuracy is being made with the cooperation
of City of Turku ecologists and the sensitivity of the
semi-automated methods is being tested.
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Fig. 6. Multi-scale patch delineation using GIS layers recording
individual tree crown density and base holons which are aggregated
to form ecological units. Aggregation is made using heuristics and
based on differences in tree crown density, crown size and species
using a specially designed GIS aggregation tool.

4.2. Biosphere Reserve Rhön: bush encroachment
monitoring

In this example themulti-scale segmentation/object
relationship modellingmethodology was used to

identify different stages of change within the Bio-
sphere Reserve Rhön, a highland region in central
Germany. For decades, the Rhön area was situated
in a pronounced peripheral location: along the in-
ner German border before reunification in 1989. For
this reason the expansion and consolidation of in-
frastructure was hampered and agriculture remained
of economic importance up until recently. In addi-
tion, unfavourable environmental conditions (wet,
steep and stony) have restricted intensive land-use
to the flood plains while the plateau and the slopes
were grazed or cut less intensively. This history has
maintained a diverse landscape with a high propor-
tion of open area exhibiting both high conservation
and cultural heritage values. The research question is
to understand the spatial pattern of bush and shrub
encroachment caused by reduced grazing intensity
(Conradi and Plachter, 2001).

Pastures and meadows show an obviously different
inner structure formed by trees, shrubs, basalt stone
walls, and wet and fallow areas. Due to the regular
mowing with modern machines and the inevitable ad-
ditional maintenance, meadows are more homogenous
than pastures, whereas livestock contribute to the spa-
tial and temporal heterogeneity by grazing, trampling
and defecation (Conradi and Plachter, 2001). In this
research, we concentrated on the differentiation be-
tween types of pastures and different stages of en-
croachment. We were not aiming for a ‘complete’ land
use classification.

In the GIS building step we collected 14 aerial
photographs taken in 1993 for a biosphere reserve
wide monitoring survey which cover the eastern
slope of the Ulster valley in the municipality Ehren-
berg (Hesse, Germany) at 1:10,000 scale. The pho-
tographs were scanned with a resolution of 600 dpi
and ortho-rectified using Erdas Orthobase software.
Finally, after conducting a colour alignment, a mosaic
was created, and the image resolution was re-sampled
to 0.4 m pixels. This high-resolution image mosaic
allows us to identify single bushes and encroachments
within the pastures and at the same time examine a
large proportion of a landscape simultaneously. The
mosaic is correspondingly large, comprising nearly
one gigabyte of data.

In thesegmentation step, a fractal-based multi-scale
segmentation algorithm developed byBaatz and
Schäpe (2000)was implemented. The fractal net evo-
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lution algorithm (FNEA) has already successfully
been applied in other studies (seeBlaschke and
Strobl, 2001; Schiewe et al., 2001for an overview)
and is based on assessments of homogeneity and het-
erogeneity. In it, an iterative heuristic optimization
procedure is programmed to get the lowest possible
overall heterogeneity across an image. The basis for
this is the degree of difference between two regions.
As this difference decreases, the fit of the two regions
is said to be closer. In the FNEA, these differences are
optimized in a heuristic process by comparing the at-
tributes of the regions (Baatz and Schäpe, 2000). That
is, given a certain feature space, two image-objects
are considered similar when they are near to each
other in this feature space. For ad-dimensional fea-
ture space the heterogeneityh (or degree of fittingas
named byBaatz and Schäpe, 2000) is described as:

h =
√∑

d

(f1d − f2d)2 (1)

wherebyf is a general term for any object feature used
to determine heterogeneity. Examples for appropriate
object features are, for instance, mean spectral values
or texture features, such as the variance of spectral
values. These distances can be further standardized by
the standard deviation of the feature in each dimension
usingEq. (2).

h =
√√√√∑

d

(
f1d − f2d

σfd

)2

(2)

Eq. (3) defines the homogeneity of two adjacent re-
gions by describing the difference of heterogeneityh
of the two regions before (h1 andh2) and after a vir-
tual merge (hm). Given an appropriate definition of
heterogeneity for a single region, the growth of het-
erogeneity in a merge should be minimized. There are
different possibilities for describing the change of het-
erogeneityhdiff before and after a virtual merge—but
they are beyond the scope of this paper.

hdiff = hm − (h1 + h2)

2
(3)

It is important to note that these heuristics do not eval-
uate the absolute value of a region’s heterogeneity but
rather evaluate the change of the heterogeneity over a
merge. This prevents, for instance, relatively homoge-
nous image objects from being merged even if the

mean values of the adjacent region are similar. This is
crucial for the landscape used in this study and is one
of the main reasons why FNEA was chosen, although
many other segmentation algorithms have been tested
(Blaschke et al., 2000). FNEA treats contrasts consis-
tently and the resulting segmentation is nearly repro-
ducible (because it uses heuristics, minor differences
between several segmentation will appear) and univer-
sal, allowing for application to a large variety of data.

In the object model relationshipstep, the semantic
links between image objects were established. Accord-
ing to the nomenclature inSection 3.2, we referred
to the pasture and forest patches in the Rhön study
area as the focal (level 0) patches. Single bushes, is-
lands of intensively grazed grass and other homoge-
neous sub-areas comprise the−1 level. The level+1
is the landscape, consisting of a mosaic of pastures
and meadows.

To aggregate the level−1 objects into level 0 ob-
jects, we assessed the ‘between-objects heterogeneity’
of the lower level objects. This is accomplished in
part by measuring within each focal object (level 0)
a parameter called ‘mean spectral difference between
all sub-objects’. Note that an assessment of this pa-
rameter allows us to distinguish between two types
of pastures with similar mean spectral characteristics
but different ‘within-patch heterogeneity’. The param-
eter ‘mean spectral difference between all sub-objects’
was collected for the level−1 patches, with values
ranging between 11 (low spectral differences between
sub-objects in all bands of the image) and 99 (very
high spectral differences between sub-objects). The
pastures fell into the range between 28 and 58.

In thevisualizationstep, map output and a database
containing the image mosaic can now be used as the
foundation of a management plan. The methodology
is currently being tested for accuracy and expanded
to a much larger area. Using this technique, we have
produced maps of grazing intensity.

Fig. 7 illustrates some results relevant to our
research objective. With themulti-scale segmenta-
tion/object relationship modelling, we delineated
different types of pasture according to their state
of ‘change’. While the grazing system is monitored
seasonally and will be accompanied by ground-truth
campaigns through 2003, the changes before 1995
can only be characterised indirectly using the method-
ology described above.
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Fig. 7. The series of screen shots of the Rhön example, which was accomplished using eCognition software (Definiens AG): (a) initial
image, (b) level−1 patches (50), (c) level 0 (300), (d) object relationship model building schematic shown in the resulting intensity
analysis map (bottom).

5. Discussion

It is becoming more and more evident that levels of
organization are not scalar but rather definitional—in
that they come solely from the observer (or point of
observation)—and at each user-defined level, phe-
nomena exhibit properties that do not exist at other
levels. This underscores the importance of a solid
understanding of the ecology of the research question
(species, community) at hand.Jelinski and Wu (1996)
concluded from a thorough literature review that there
was no suitable encompassing theory for indicating
how sensitive results are to the scale of the analysis
and to variations in the way in which data are repre-
sented. AsGardener (1998)states, the identification
of appropriate scales for analysis and prediction is an
interesting and challenging problem. Even if the fac-
tors producing scale-dependent patterns may not be
clearly understood, accurate and reliable descriptions
of scale-dependent patterns and processes are required
to design data sampling procedures and test the ac-
curacy and reliability of methods of the analysis and
consequently modelling procedures. Some researchers

currently elucidate alternative way towards the fuzzy
delineation of objects or the delineation of fuzzy ob-
jects (e.g.Cheng, 1999) or a probability-based image
segmentation approach (Abkar et al., 2000).

Although many scientists are aware that issues of
heterogeneity, pattern, process, scale, scaling, and
hierarchy are essential in developing robust method-
ologies of landscape analysis few make advantageous
use of modern spatial tools such as remote sensing and
GIS. While recent developments in complexity theory
(e.g. complex adaptive systems, self-organized criti-
cality) may help us understand how order and com-
plexity evolve and are maintained in ecosystems and
landscapes (Levin, 1999), empirical multi-scale anal-
ysis methodology must be developed to analyze, mon-
itor and predict spatial heterogeneity in landscapes.

Wu (1999) provides a theoretical framework for
this methodological development, using the metaphor
of a scaling ladder. We have tried to embrace the
challenges of scale and hierarchy in landscape by in-
troducing and applying themulti-scale image segmen-
tation/object relationship modellingmethodology.
In two different examples we decompose complex
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natural environments into focal units utilising topolog-
ical relations to model between smaller units of dif-
ferentiation and the focal level. Each example draws
upon a synthesis of ecosystem theory as encapsulated
in the HPD paradigm. This methodology generates
‘candidate crisp’ boundaries while theoretically and
methodologically staying true to a hierarchical model
of landscapes.

From the Ruissalo example, we can already identify
some challenges. The MAUP problem is very much
in evidence, and because we are using only one res-
olution of imagery to do the initial ‘tree’ delineation,
we were successful at delineating crowns greater than
4 m in diameter and in forest patches with at least a
1-m gap between crowns. Crowns smaller than this or
crowns that are much larger (especially large mature
oaks) are either missed or divided. Further work on
tree delineation algorithms is needed, and the use of
multiple scales of imagery must also be incorporated
into the initial delineation phase of the unit mapping.
Further accuracy assessment is critical and will pro-
vide us with information on the resolution of potential
data sets that would in the future improve the analy-
sis. The heuristics we used to aggregate the patches
also need refinement, and we are also currently work-
ing with biologists to improve our habitat model for
the three-toed woodpecker (Picoides tridactylus).

The Rhön example demonstrates the applicability
of the multi-scale segmentation/object relationship
modelling methodology using FNEA segmentation.
More specifically, we could produce visualizations
of the landscape with discretization of roads, set-
tlements, forest and pasture elements. Within the
object relationship modelling step, the ‘within patch
heterogeneity’ measure (mean spectral difference be-
tween all sub-objects) was successfully applied to
characterize shrub encroachment on most pastures.
However, it appeared that cultural landscape elements
embedded within pastures, such as hedges, stone
walls, and small islands of trees, were influencing the
results. The next step will be to improve the object
relationship modelling heuristics with which to dis-
tinguish between these structural elements, which are
typical for the human-influenced landscape, and ac-
tual bush and shrub encroachment. In the next phase
of the project we hope to use this more comprehen-
sive set of heuristics to fully map the cultural and
natural heritage of this visually appealing landscape.

We conclude that themulti-scale segmenta-
tion/object relationship modellingapproach can be
a vehicle for a theory-driven exploration of different
types of landscape heterogeneity. The methodology
will lead to a better understanding and characteriza-
tion of the processes, operating through the broad
range of scales that form landscape.
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