Measuring landscape pattern

Why would we want to measure landscape patterns?

Identify change over time Compare landscapes

Compare alternative landscape scenarios

Explain processes

Steps in Application of a Metric

Spatial Data Set orthophoto, satellite image, digital map

Scale definition Extent of analysis, resolution of elements

Classification Supervised or automated (unsupervised

Application of metric

Interpretation

Number of Attribute Classes

- Just how diverse is the landscape in terms of defined patch elements?
- Southwestern U.S.
 - Bottomland hardwoods, bald-cypress swamp, pine savanna, oak thickets, grasslands, agricultural, pine plantations, upland hardwoods, etc. (diverse)
- Tierra del Fuego:
 - Tundra, southern beech forest, pampas, barren (relatively low)
- Antarctica
 - Ice. Rock. More ice. 2 vascular plant spp. somewhere.

Quantifying Landscape Pattern

Landscape Composition:

What elements make up the landscape?

How much of each element is there?

Landscape Configuration:

How are the elements of the landscape arranged?

What types of shapes do they take?

How do they relate to each other spatially?

Composition

Richness Evenness Diversity

Configuration

Size Shape Edge length/density Isolation Fragmentation Contagion Connectivity Interspersion Dispersion

Raster and vector images

Rasters consist of grid cells with individual values.

Vector coverages are composed of shapes (polygons) that are defined by connected points

Defining the landscape

We often use remotely sensed data to measure landscape pattern.

Aerial photos

Satellite imagery

Classifying a landscape

We often define landscapes using discrete categories.

Thus we must "classify" images.

Classifying a landscape

The choice of the classification scheme depends on the question being asked or the subject being addressed

Mid successional

forest/nonforest

Landscape Composition

Richnessnumber of patch types

Proportional coverage-% of landscape covered by each type

Evenness-

how evenly are the types represented - Shannon's Evenness Index

- Simpson's Evenness Index

Diversity-

how diverse is the distribution of types

- Shannon's Diversity Index
- Simpson's Evenness Index
- Dominance

Richness vs. evenness

- Hill (1973): all measures of biodiversity differ only in how much weight (importance) is allocated to common species vs. rare species
- How strongly do we want our index to differentiate between landscapes with species proportions:
 - 20:20:20:20 (5 species, evenly distributed)
 - 96:1:1:1:1 (5 species, but 1 super-common!)

Dominance (O'Neill et al. 1988)

- To what extent do one or a few patch types dominate the landscape?
- The higher the D, (D₁ in paper), the more one or a few types dominate.
- Values range from 0.19 to 1.5 in O'Neill paper (can be normalized to be between 0 and 1).

Landscape Composition

	Conifer = 75% Meadow = 10% Water = 5% Rock = 5% Roads = 5%
Dominance = 1 – evenness, or	Ln(5) + (.75*ln(.75) + .10*ln(.10) + .05 *ln(.05) + .05*ln(.05) + .05*ln(.05))
$D_1 = \ln(M) + \sum [(p_i * \ln(p_i))],$	= 0.714

where M = # patch types $p_i =$ fraction of M that are type i

Conifer = 25% Meadow = 20% Water = 22% Rock = 21% Roads = 12%

Ln(5) + (.25*ln(.25) + .20*ln(.20) + .22*ln(.22)+ .21*ln(.21) + .12*ln(.12))= 0.026

Landscape Configuration

Patch level metrics – summarize aspects of individual patches

Landscape level metrics – summarize entire landscapes and thus the spatial pattern of patches

http://www.umass.edu/landeco/research/fragstats/doc uments/Conceptual%20Background/Landscape%20Metr ics/Landscape%20Metrics.htm

Patch size distribution and density

- Mean patch size
- Area of the largest patch
- Variation in patch size
- Patch density

Edge length Edge to area ratio Edge contrast

Isolation/proximity

Mean nearest neighbor distance Proximity index

Low isolation/high proximity

High isolation/low proximity

Dispersion

Nearest Neighbor Relative Variance Index

Nearest Neighbor Index of Dispersion (Clark & Evans Statistic)

Contagion (Texture) Index

- Nothing to do with disease (unless forest pathogens involved)
- Just how "mixed up" or "clumped" is the landscape?
- Straightforward interpretation: the greater the index, the more *aggregated* the landscape elements
- unitless

Contagion Contagion index

High contagion

Calculating the Contagion Index $C = 2n \ln n + \sum_{i=1}^{n} \sum_{j=1}^{n} P_{ij} \ln P_{ij}$

Where: n= number of grid cells, P_{ij} is probability of having a neighbor of type *j* for every cell of type *i*.

In analysis of 94 quadrangles by O'Neill *et al.* 1988, C (called D_2 in paper) ranged from 9.5 (low "clumping") to 22.8 (high "clumping").

Proximity Index

- Calculated for an individual patch
- Used to show relative isolation of patch from others of its kind
- Low values = isolated, high = close
- Calculated as:
 - Where S_k =area of k^{th} patch
 - n_k = nearest-neighbor distance between focal patch and nearest cell of patch of same type

 PX_i

"search radius" is arbitrary, and depends on objectives!

Contrast

Total Edge Edge density Edge contrast index Contrast-weighted edge density Neighborhood contrast index

Shape complexity Edge density Shape index

Complex geometry

Simple geometry

Connectivity Connectance

Patch cohesion index

- Resistance

- Percolation theory

Like contrast, connectivity depends on the object of investigation

"connected with respect to ... "

Connectivity

Connectance

- Defined as the number of functional joinings
- Each pair of patches is either connected or not (0/1) based on a user-specified distance
- Distance can be Euclidean or resistance-weighted
- Expressed as a percent of all possible joinings between patches of the same type.

Connectivity

Percolation theory

- Connectivity can be inferred from patch density.
- Connectivity increases in a nonlinear fashion as the proportion map occupied by a given patch type (*p*) increases.
- Once *p* = 0.5928 (0.41 for the 8-neighbor rule), the largest connected cluster will span the map edge-to edge

Issues with measuring landscape patterns

Boundary effects

Scale effects

Redundancy

Rules / Approaches

Boundary Effects

Boundary Effects

Landscape extent/heterogeneity

Scale effects

Both grain and extent affect how landscape metrics are interpreted, and must be consistent across landscapes to be compared.

50 x 50 resolution

100 x 100 resolution

200 x 200 resolution

Effects of scale on pattern measurement

Relationship between extent and three landscape metrics

Table 8. Regression of three landscape indices with extent (log area). Values are the slopes and (r^2) .				
	Landscape parameter			
Scene	Diversity (H)	Dominance (D) Contagion (C)	
Goodland, KS	0.008 (0.19)	0.197 (0.88)	3.253 (0.78)	
Natchez, MS	0.127 (0.78)	-0.015 (0.02)	1.535 (0.72)	
Knoxville, TN	-0.058 (0.38)	0.111 (0.87)	0.938 (0.47)	
Greenville, SC	0.023 (0.10)	0.067 (0.70)	0.067 (0.67)	
Waycross, GA	0.044 (0.84)	0.081 (0.50)	1.519 (0.57)	
Macon, GA	-0.006 (0.06)	0.077 (0.93)	1.373 (0.66)	
Athens, GA	0.041 (0.42)	0.081 (0.57)	1.569 (0.83)	

Turner et al. 1989

Scale effects

Coarsegrained

Edge = 1000

Finegrained

Edge = 1500

Redundancy

Many measures are highly correlated

Core area index

Redundancy

Riitters et al. (1995) found that only five metrics were needed to explain most of the variability in their landscapes:

- Number of patch types
- Mean edge/area ratio
- Contagion
- Average patch shape
- Fractal measurements

Riitters et al. 1995

- How did they do it?
 - Calculated 55 metrics for 85 landscapes (55*85=4675)
 - Created a table of correlation coefficients (0=no correlation, 1= perfect correlation) between the metrics (*factor analysis*)
 - Used high correlation coefficients to distinguish "families" of indices
 - Indices that explained most variation in data set were selected as "representative indices"

Rules / approaches

Neighbor rules are critical in defining landscape metrics.

Contrast weights will affect weighted edge indices.

Characteristics of Patch Elements

- Patch analysis is incomplete without examining the intrinsic nature of patches
- GET INTO THE PATCH! Without these metrics, a patch is just a pretty polygon on a map or GIS.
- Patch characteristics determine:
 - Utility by organisms
 - Edge effects
 - Susceptibility to disturbance

Function

- Net Primary Productivity:
 = GPP (photosynthesis) Respiration = NPP
- Production of wildlife numbers (head of elk, young spotted owls, tailed frogs, etc.)
- Watershed regulation (Andrews LTER example)
- Silt and sediment regulation (TSS- total suspended solids)
 - Compare regions w/ harvest vs. unharvested (control)
- CWD production

Composition

- Landscape elements cannot be considered without considering composition
- Several ways to measure this
- $\hfill \alpha$ and $\beta\mbox{-richness:}$ mere number of species in a spatial context
 - Whittaker (1977): *inventory diversity*: point (100-500 m²), α (<1-625 ha), γ (gamma)(625-2500), ε (epsilon)(>2500 ha)

-comparison of functional groups: trees, shrubs, etc.

• Evenness

- Biodiversity **Indices**: a composite of richness and evenness
 - Simpson
 - Shannon-Wiener

