APPENDIX 1

RUN-OUT DISTANCES

When the roadway cross-section transitions from a cut-fill section at one station to a through cut at the next section, the distance over which the fill area tapers out must be determined. This is referred to as the fill run out.

A similar distance can be figured for the cut-fill to through fill transition.

For lack of a better method, a simple pro-ration system is usually used. Refer to the sample EARTHWORK QUANTITY SHEET for the data in the following example.

Station 6+40 fill end area; 113 ft²

Station 6+95 cut end area; 130 ft

Distance between stations; 55 ft

, Fill run-cut distance, x

$$\frac{x}{55} = \frac{113}{113 + 130}$$

x = 25.0 feet. Use 26 feet.

Volume (prism formula) =
$$\frac{(113 \text{ ft}^2)(26 \text{ ft})}{81}$$
 (cy) = 36 cy

A runout distance must also be computed when the cross section transitions from through fill to a through cut or vice versa. (Tigure 2)

Station 7+70 fill and area; 190 ft²

Station 8+50 cut and area; 110 ft²

Distance between stations; 80 ft

Fill run out distance; x

$$\frac{x}{80} = \frac{190}{190+110}$$

x = 50.7 feet; use 51 feet

Fill volume (prism formula) =
$$\frac{(190 \text{ ft}^2)(51 \text{ ft})}{81}$$
 (cy) = 120 cy

Cut volume (prism formula) =
$$\frac{(110 \text{ ft}^2)(29 \text{ ft})}{81} \frac{(\text{cy})}{(\text{ft}^3)} = 39 \text{ cy}$$

1. Cut Fill to Through Cut:

