HEAVY EQUIPMENT VEHICLE COMBINATIONS
AND
TRANSPORT WEIGHT RESTRICTIONS
ON
OREGON STATE HIGHWAYS
AND
FOREST ROADS

Instructor: Brian Kramer
Introduction:

Various types and configurations of heavy equipment must be transported on forest roads in the support or various forest operations. These operations include logging, road building, oil, and mineral extraction. Transport vehicle configurations, gross vehicle weight (GVW), and wheel loading are of concern for five major reasons:

1. Dimensions of vehicle configurations for road geometry design.
2. Transport of heavy equipment on existing transportation facilities.
3. Vehicle axle weights for aggregate and paved road surface design.
4. Legal haul weight limits for road surface management.
5. Cost of equipment transport for logging and road construction cost estimates.

All states have restrictions on the movement of heavy equipment on state and county highways. Federal agencies also have similar restrictions on forest roads. Vehicle weight regulations for the state of Oregon will be used as an example.

Heavy Equipment Transport Configuration Computations:

There are several low boy axle configurations. The general nomenclature is illustrated in Figure 1 and the various combinations are described in Figure 2.

Figure 1. Low boy Component Nomenclature
Oregon state law requires a breakdown at a payload weight of 130,000 pounds, with certain exceptions. Further information can be obtained from the "Oregon State Department of Transportation Highway Division Vehicle Size and Weight Laws Handbook".

With an Oregon State overload haul permit, calculation for the low boy axle configurations are based on the weight limitations per axle in table 1.
Table 1. Maximum GVW permit overload axle loads

12,000 lb. steering axle
21,000 lb. single axle
43,000 lb. tandem axle

The *gross* axle weight for a single axle load is less than one half that of a tandem axle. The reason for this is the forces of the tandem axle wheels on a pavement surfaces generate forces into the pavement structure between the dual tires that become neutral, and have no load bearing effect on the pavement structure. *This* force reduction is expressed as the difference between the weight limit of one tandem axle and a single axle, which is 500 lb. more allowable weight per axle on a tandem axle set.

The following information must be known in order to estimate a transport vehicle configuration used to transport a specific piece of heavy equipment:

1. Vehicle transport components.
2. Gross weight of vehicle transport components.
4. Gross weight of equipment to be transported.

Example:

A heavy equipment transport company *owns* the following equipment in Table 2. The maximum GVW must be determined for each possible configuration. The *gross* transport component load is determined by adding the maximum *gross* overload rating per axle per component in a configuration. For example the tractor unit has one steering axle and one tandem axle. The steering axle can carry a maximum load of 12 kips and the tandem drivers 43 kips. The *gross* overload, or GVW, for this unit is 55 kips, column three in Table 2. The maximum weight of transport combinations and their maximum loads must be computed next. These are summarized in Table 3.

Table 2. Transport equipment

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Gross wt. (kips)</th>
<th>Max. Gross Load Weight (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tractor</td>
<td>22</td>
<td>55</td>
</tr>
<tr>
<td>Trailer (Low Boy)</td>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td>Jeep (Tandem Axle)</td>
<td>8</td>
<td>43</td>
</tr>
<tr>
<td>Single Pup (Single Axle)</td>
<td>3.5</td>
<td>21</td>
</tr>
<tr>
<td>Double Pup (Tandem Axle)</td>
<td>5</td>
<td>43</td>
</tr>
</tbody>
</table>

Note: kip = 1,000 lb.
Table 3. Payload Weights and Respective Number of Axles Required

<table>
<thead>
<tr>
<th>Configuration (1)</th>
<th>Gross Transport Equipment wt. (kips) (2)</th>
<th>(Gross Weight) (GVW) (kips) (3)</th>
<th>Gross Load (kips) (3) - (2) (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Axle</td>
<td>42</td>
<td>98</td>
<td>56</td>
</tr>
<tr>
<td>6 Axle</td>
<td>45.5</td>
<td>119</td>
<td>73.5</td>
</tr>
<tr>
<td>7 Axle</td>
<td>47</td>
<td>141</td>
<td>94</td>
</tr>
<tr>
<td>8 Axle</td>
<td>53.5</td>
<td>162</td>
<td>108.5</td>
</tr>
<tr>
<td>9 Axle</td>
<td>55</td>
<td>184</td>
<td>128</td>
</tr>
</tbody>
</table>

The transport vehicle configurations can be determined for any load to be transported with the equipment listed in Table 3. The remaining information to be acquired is the gross weight of the equipment to be transported. This information can be obtained from various sources, such as, equipment manufacturers, equipment sales companies, and reference books.

For example, a **D-8L** Cat tractor must be transported. The gross weight of a D-8L Cat with a straight dozer blade, fuel, and lub had a gross weight of **81,800 lb.** (Ref. Caterpillar Performance Handbook, ed. 14, pp 15.) From Table 3 column 4, a six axle transport vehicle can haul **73.5 kips** load. This will not carry the D-8L legally. The seven axle configuration can carry a maximum legal overload weight of **94 kips.** The D-8L must be transported in this configuration.

Certain types of equipment must be broken down to be legally transported. Large old growth yarders, rock crushing equipment, oil rigs, and mining equipment are in this category. The equipment break down and component weight must be known.

For example a Skagit **Bu-199** self-propelled yarder, rubber mounted, with a T-100 tower, must be broken down as follows. The yarder, jack pads, and front wheels must be removed. A goose neck is attached to the front of the undercarriage. The undercarriage and tower are transported with a tractor, tandem jeep, and tandem pup. When set up in this configuration the critical axles are the tandem set on the yarder undercarriage at **41.5 kips.** The yarder is transported on a low boy. The number of axles required depend on the yarder weight and whether or not it carries lines and fuel during transport.

Summary:

The information provided describes how to determine vehicle combinations required to transport heavy equipment in the state of Oregon. This information is required for determining equipment transport costs, transportation planning, road design, and transport operations.

Forest roads are often designed and constructed to accommodate highway legal log truck and low boy single trailer combinations (five axles). When proper coordination with harvest planners has not been accomplished, transport problems can occur.
Table 1. Maximum GVW permit overload axle loads

- **12,000 lb. steering axle**
- **21,000 lb. single axle**
- **43,000 lb. tandem axle**

The *gross* axle weight for a single axle load is less than one half that of a tandem axle. The reason for this is the forces of the tandem axle wheels on a pavement surfaces generate forces into the pavement structure between the dual tires that become neutral, and have no load bearing effect on the pavement structure. This force reduction is expressed as the difference between the weight limit of one tandem axle and a single axle, which is 500 lb. more allowable weight per axle on a tandem axle set.

The following information must be known in order to estimate a transport vehicle configuration used to transport a specific piece of heavy equipment:

1. Vehicle transport components.
2. Gross weight of vehicle transport components.
4. Gross weight of equipment to be transported.

Example:

A heavy equipment transport company owns the following equipment in Table 2. The maximum GVW must be determined for each possible configuration. The gross transport component load is determined by adding the maximum gross overload rating per axle per component in a configuration. For example the tractor unit has one steering axle and one tandem axle. The steering axle can carry a maximum load of 12 kips and the tandem drivers 43 kips. The gross overload, or GVW, for this unit is 55 kips, column three in Table 2. The maximum weight of transport combinations and their maximum loads must be computed next. These are summarized in Table 3.

Table 2. Transport equipment

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Gross wt. (kips)</th>
<th>Max. Gross Load Weight (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tractor</td>
<td>22</td>
<td>55</td>
</tr>
<tr>
<td>Trailer (Low Boy)</td>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td>Jeep (Tandem Axle)</td>
<td>8</td>
<td>43</td>
</tr>
<tr>
<td>Single Pup (Single Axle)</td>
<td>3.5</td>
<td>21</td>
</tr>
<tr>
<td>Double Pup (Tandem Axle)</td>
<td>5</td>
<td>43</td>
</tr>
</tbody>
</table>

Note: kip = 1,000 lb.
Problems that can occur from the above situation are: forest road curve geometry and asphalt paved or aggregate surfaced roads are designed for the maximum dimensions and legal wheel loading of a five axle low boy or log truck, but forest harvest operations often require equipment to be transported that require larger transport vehicle combinations to meet the maximum legal axle load limit. When this occurs vehicle combinations with wheel bases longer than the design vehicles are often unable to negotiate the minimum radius horizontal curves designed for the five axle vehicle combination. In this situation equipment, such as self-propelled Skagit BU-199 yarder, must be assembled and driven on the forest road to the landing. In this configuration the yarder can have 90 kips on the from tandem axles and 120 kips on the rear tandem axles. Under adverse conditions these axle loads can cause serious damage to the road surface structure and significantly reduce the design service life of the surfacing.